ia32-64/x86/vfmsub132ps.vfmsub213ps.vfmsub231ps.html
2025-07-08 02:23:29 -03:00

400 lines
18 KiB
HTML
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xmlns:x86="http://www.felixcloutier.com/x86"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><link rel="stylesheet" type="text/css" href="style.css"></link><title>VFMSUB132PS/VFMSUB213PS/VFMSUB231PS
— Fused Multiply-Subtract of Packed SinglePrecision Floating-Point Values</title></head><body><header><nav><ul><li><a href='index.html'>Index</a></li><li>December 2023</li></ul></nav></header><h1>VFMSUB132PS/VFMSUB213PS/VFMSUB231PS
— Fused Multiply-Subtract of Packed SinglePrecision Floating-Point Values</h1>
<table>
<tr>
<th>Opcode/Instruction</th>
<th>Op/En</th>
<th>64/32 Bit Mode Support</th>
<th>CPUID Feature Flag</th>
<th>Description</th></tr>
<tr>
<td>VEX.128.66.0F38.W0 9A /r VFMSUB132PS xmm1, xmm2, xmm3/m128</td>
<td>A</td>
<td>V/V</td>
<td>FMA</td>
<td>Multiply packed single precision floating-point values from xmm1 and xmm3/mem, subtract xmm2 and put result in xmm1.</td></tr>
<tr>
<td>VEX.128.66.0F38.W0 AA /r VFMSUB213PS xmm1, xmm2, xmm3/m128</td>
<td>A</td>
<td>V/V</td>
<td>FMA</td>
<td>Multiply packed single precision floating-point values from xmm1 and xmm2, subtract xmm3/mem and put result in xmm1.</td></tr>
<tr>
<td>VEX.128.66.0F38.W0 BA /r VFMSUB231PS xmm1, xmm2, xmm3/m128</td>
<td>A</td>
<td>V/V</td>
<td>FMA</td>
<td>Multiply packed single precision floating-point values from xmm2 and xmm3/mem, subtract xmm1 and put result in xmm1.</td></tr>
<tr>
<td>VEX.256.66.0F38.W0 9A /r VFMSUB132PS ymm1, ymm2, ymm3/m256</td>
<td>A</td>
<td>V/V</td>
<td>FMA</td>
<td>Multiply packed single precision floating-point values from ymm1 and ymm3/mem, subtract ymm2 and put result in ymm1.</td></tr>
<tr>
<td>VEX.256.66.0F38.W0 AA /r VFMSUB213PS ymm1, ymm2, ymm3/m256</td>
<td>A</td>
<td>V/V</td>
<td>FMA</td>
<td>Multiply packed single precision floating-point values from ymm1 and ymm2, subtract ymm3/mem and put result in ymm1.</td></tr>
<tr>
<td>VEX.256.66.0F38.0 BA /r VFMSUB231PS ymm1, ymm2, ymm3/m256</td>
<td>A</td>
<td>V/V</td>
<td>FMA</td>
<td>Multiply packed single precision floating-point values from ymm2 and ymm3/mem, subtract ymm1 and put result in ymm1.</td></tr>
<tr>
<td>EVEX.128.66.0F38.W0 9A /r VFMSUB132PS xmm1 {k1}{z}, xmm2, xmm3/m128/m32bcst</td>
<td>B</td>
<td>V/V</td>
<td>AVX512VL AVX512F</td>
<td>Multiply packed single precision floating-point values from xmm1 and xmm3/m128/m32bcst, subtract xmm2 and put result in xmm1.</td></tr>
<tr>
<td>EVEX.128.66.0F38.W0 AA /r VFMSUB213PS xmm1 {k1}{z}, xmm2, xmm3/m128/m32bcst</td>
<td>B</td>
<td>V/V</td>
<td>AVX512VL AVX512F</td>
<td>Multiply packed single precision floating-point values from xmm1 and xmm2, subtract xmm3/m128/m32bcst and put result in xmm1.</td></tr>
<tr>
<td>EVEX.128.66.0F38.W0 BA /r VFMSUB231PS xmm1 {k1}{z}, xmm2, xmm3/m128/m32bcst</td>
<td>B</td>
<td>V/V</td>
<td>AVX512VL AVX512F</td>
<td>Multiply packed single precision floating-point values from xmm2 and xmm3/m128/m32bcst, subtract xmm1 and put result in xmm1.</td></tr>
<tr>
<td>EVEX.256.66.0F38.W0 9A /r VFMSUB132PS ymm1 {k1}{z}, ymm2, ymm3/m256/m32bcst</td>
<td>B</td>
<td>V/V</td>
<td>AVX512VL AVX512F</td>
<td>Multiply packed single precision floating-point values from ymm1 and ymm3/m256/m32bcst, subtract ymm2 and put result in ymm1.</td></tr>
<tr>
<td>EVEX.256.66.0F38.W0 AA /r VFMSUB213PS ymm1 {k1}{z}, ymm2, ymm3/m256/m32bcst</td>
<td>B</td>
<td>V/V</td>
<td>AVX512VL AVX512F</td>
<td>Multiply packed single precision floating-point values from ymm1 and ymm2, subtract ymm3/m256/m32bcst and put result in ymm1.</td></tr>
<tr>
<td>EVEX.256.66.0F38.W0 BA /r VFMSUB231PS ymm1 {k1}{z}, ymm2, ymm3/m256/m32bcst</td>
<td>B</td>
<td>V/V</td>
<td>AVX512VL AVX512F</td>
<td>Multiply packed single precision floating-point values from ymm2 and ymm3/m256/m32bcst, subtract ymm1 and put result in ymm1.</td></tr>
<tr>
<td>EVEX.512.66.0F38.W0 9A /r VFMSUB132PS zmm1 {k1}{z}, zmm2, zmm3/m512/m32bcst{er}</td>
<td>B</td>
<td>V/V</td>
<td>AVX512F</td>
<td>Multiply packed single precision floating-point values from zmm1 and zmm3/m512/m32bcst, subtract zmm2 and put result in zmm1.</td></tr>
<tr>
<td>EVEX.512.66.0F38.W0 AA /r VFMSUB213PS zmm1 {k1}{z}, zmm2, zmm3/m512/m32bcst{er}</td>
<td>B</td>
<td>V/V</td>
<td>AVX512F</td>
<td>Multiply packed single precision floating-point values from zmm1 and zmm2, subtract zmm3/m512/m32bcst and put result in zmm1.</td></tr>
<tr>
<td>EVEX.512.66.0F38.W0 BA /r VFMSUB231PS zmm1 {k1}{z}, zmm2, zmm3/m512/m32bcst{er}</td>
<td>B</td>
<td>V/V</td>
<td>AVX512F</td>
<td>Multiply packed single precision floating-point values from zmm2 and zmm3/m512/m32bcst, subtract zmm1 and put result in zmm1.</td></tr></table>
<h2 id="instruction-operand-encoding">Instruction Operand Encoding<a class="anchor" href="#instruction-operand-encoding">
</a></h2>
<table>
<tr>
<th>Op/En</th>
<th>Tuple Type</th>
<th>Operand 1</th>
<th>Operand 2</th>
<th>Operand 3</th>
<th>Operand 4</th></tr>
<tr>
<td>A</td>
<td>N/A</td>
<td>ModRM:reg (r, w)</td>
<td>VEX.vvvv (r)</td>
<td>ModRM:r/m (r)</td>
<td>N/A</td></tr>
<tr>
<td>B</td>
<td>Full</td>
<td>ModRM:reg (r, w)</td>
<td>EVEX.vvvv (r)</td>
<td>ModRM:r/m (r)</td>
<td>N/A</td></tr></table>
<h3 id="description">Description<a class="anchor" href="#description">
</a></h3>
<p>Performs a set of SIMD multiply-subtract computation on packed single precision floating-point values using three source operands and writes the multiply-subtract results in the destination operand. The destination operand is also the first source operand. The second operand must be a SIMD register. The third source operand can be a SIMD register or a memory location.</p>
<p>VFMSUB132PS: Multiplies the four, eight or sixteen packed single precision floating-point values from the first source operand to the four, eight or sixteen packed single precision floating-point values in the third source operand. From the infinite precision intermediate result, subtracts the four, eight or sixteen packed single precision floating-point values in the second source operand, performs rounding and stores the resulting four, eight or sixteen packed single precision floating-point values to the destination operand (first source operand).</p>
<p>VFMSUB213PS: Multiplies the four, eight or sixteen packed single precision floating-point values from the second source operand to the four, eight or sixteen packed single precision floating-point values in the first source operand. From the infinite precision intermediate result, subtracts the four, eight or sixteen packed single precision floating-point values in the third source operand, performs rounding and stores the resulting four, eight or sixteen packed single precision floating-point values to the destination operand (first source operand).</p>
<p>VFMSUB231PS: Multiplies the four, eight or sixteen packed single precision floating-point values from the second source to the four, eight or sixteen packed single precision floating-point values in the third source operand. From the infinite precision intermediate result, subtracts the four, eight or sixteen packed single precision floating-point values in the first source operand, performs rounding and stores the resulting four, eight or sixteen packed single precision floating-point values to the destination operand (first source operand).</p>
<p>EVEX encoded versions: The destination operand (also first source operand) and the second source operand are ZMM/YMM/XMM register. The third source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is conditionally updated with write mask k1.</p>
<p>VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a YMM register or a 256-bit memory location and encoded in rm_field.</p>
<p>VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination register are zeroed.</p>
<h3 id="operation">Operation<a class="anchor" href="#operation">
</a></h3>
<pre>In the operations below, “*” and “-” symbols represent multiplication and subtraction with infinite precision inputs and outputs (no
rounding).
</pre>
<h4 id="vfmsub132ps-dest--src2--src3--vex-encoded-version-">VFMSUB132PS DEST, SRC2, SRC3 (VEX encoded version)<a class="anchor" href="#vfmsub132ps-dest--src2--src3--vex-encoded-version-">
</a></h4>
<pre>IF (VEX.128) THEN
MAXNUM := 2
ELSEIF (VEX.256)
MAXNUM := 4
FI
For i = 0 to MAXNUM-1 {
n := 32*i;
DEST[n+31:n] := RoundFPControl_MXCSR(DEST[n+31:n]*SRC3[n+31:n] - SRC2[n+31:n])
}
IF (VEX.128) THEN
DEST[MAXVL-1:128] := 0
ELSEIF (VEX.256)
DEST[MAXVL-1:256] := 0
FI
</pre>
<h4 id="vfmsub213ps-dest--src2--src3--vex-encoded-version-">VFMSUB213PS DEST, SRC2, SRC3 (VEX encoded version)<a class="anchor" href="#vfmsub213ps-dest--src2--src3--vex-encoded-version-">
</a></h4>
<pre>IF (VEX.128) THEN
MAXNUM := 2
ELSEIF (VEX.256)
MAXNUM := 4
FI
For i = 0 to MAXNUM-1 {
n := 32*i;
DEST[n+31:n] := RoundFPControl_MXCSR(SRC2[n+31:n]*DEST[n+31:n] - SRC3[n+31:n])
}
IF (VEX.128) THEN
DEST[MAXVL-1:128] := 0
ELSEIF (VEX.256)
DEST[MAXVL-1:256] := 0
FI
</pre>
<h4 id="vfmsub231ps-dest--src2--src3--vex-encoded-version-">VFMSUB231PS DEST, SRC2, SRC3 (VEX encoded version)<a class="anchor" href="#vfmsub231ps-dest--src2--src3--vex-encoded-version-">
</a></h4>
<pre>IF (VEX.128) THEN
MAXNUM := 2
ELSEIF (VEX.256)
MAXNUM := 4
FI
For i = 0 to MAXNUM-1 {
n := 32*i;
DEST[n+31:n] := RoundFPControl_MXCSR(SRC2[n+31:n]*SRC3[n+31:n] - DEST[n+31:n])
}
IF (VEX.128) THEN
DEST[MAXVL-1:128] := 0
ELSEIF (VEX.256)
DEST[MAXVL-1:256] := 0
FI
</pre>
<h4 id="vfmsub132ps-dest--src2--src3--evex-encoded-version--when-src3-operand-is-a-register-">VFMSUB132PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)<a class="anchor" href="#vfmsub132ps-dest--src2--src3--evex-encoded-version--when-src3-operand-is-a-register-">
</a></h4>
<pre>(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);
ELSE
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);
FI;
FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] :=
RoundFPControl(DEST[i+31:i]*SRC3[i+31:i] - SRC2[i+31:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] := 0
FI
FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
</pre>
<h4 id="vfmsub132ps-dest--src2--src3--evex-encoded-version--when-src3-operand-is-a-memory-source-">VFMSUB132PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)<a class="anchor" href="#vfmsub132ps-dest--src2--src3--evex-encoded-version--when-src3-operand-is-a-memory-source-">
</a></h4>
<pre>(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i] :=
RoundFPControl_MXCSR(DEST[i+31:i]*SRC3[31:0] - SRC2[i+31:i])
ELSE
DEST[i+31:i] :=
RoundFPControl_MXCSR(DEST[i+31:i]*SRC3[i+31:i] - SRC2[i+31:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] := 0
FI
FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
</pre>
<h4 id="vfmsub213ps-dest--src2--src3--evex-encoded-version--when-src3-operand-is-a-register-">VFMSUB213PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)<a class="anchor" href="#vfmsub213ps-dest--src2--src3--evex-encoded-version--when-src3-operand-is-a-register-">
</a></h4>
<pre>(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);
ELSE
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);
FI;
FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] :=
RoundFPControl_MXCSR(SRC2[i+31:i]*DEST[i+31:i] - SRC3[i+31:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] := 0
FI
FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
</pre>
<h4 id="vfmsub213ps-dest--src2--src3--evex-encoded-version--when-src3-operand-is-a-memory-source-">VFMSUB213PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)<a class="anchor" href="#vfmsub213ps-dest--src2--src3--evex-encoded-version--when-src3-operand-is-a-memory-source-">
</a></h4>
<pre>(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i] :=
RoundFPControl_MXCSR(SRC2[i+31:i]*DEST[i+31:i] - SRC3[31:0])
ELSE
DEST[i+31:i] :=
RoundFPControl_MXCSR(SRC2[i+31:i]*DEST[i+31:i] - SRC3[i+31:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] := 0
FI
FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
</pre>
<h4 id="vfmsub231ps-dest--src2--src3--evex-encoded-version--when-src3-operand-is-a-register-">VFMSUB231PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a register)<a class="anchor" href="#vfmsub231ps-dest--src2--src3--evex-encoded-version--when-src3-operand-is-a-register-">
</a></h4>
<pre>(KL, VL) = (4, 128), (8, 256), (16, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);
ELSE
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);
FI;
FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] :=
RoundFPControl_MXCSR(SRC2[i+31:i]*SRC3[i+31:i] - DEST[i+31:i])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] := 0
FI
FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
</pre>
<h4 id="vfmsub231ps-dest--src2--src3--evex-encoded-version--when-src3-operand-is-a-memory-source-">VFMSUB231PS DEST, SRC2, SRC3 (EVEX encoded version, when src3 operand is a memory source)<a class="anchor" href="#vfmsub231ps-dest--src2--src3--evex-encoded-version--when-src3-operand-is-a-memory-source-">
</a></h4>
<pre>(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i] :=
RoundFPControl_MXCSR(SRC2[i+31:i]*SRC3[31:0] - DEST[i+31:i])
ELSE
DEST[i+31:i] :=
RoundFPControl_MXCSR(SRC2[i+31:i]*SRC3[i+31:i] - DEST[i+31:i])
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] := 0
FI
FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
</pre>
<h3 id="intel-c-c++-compiler-intrinsic-equivalent">Intel C/C++ Compiler Intrinsic Equivalent<a class="anchor" href="#intel-c-c++-compiler-intrinsic-equivalent">
</a></h3>
<pre>VFMSUBxxxPS __m512 _mm512_fmsub_ps(__m512 a, __m512 b, __m512 c);
</pre>
<pre>VFMSUBxxxPS __m512 _mm512_fmsub_round_ps(__m512 a, __m512 b, __m512 c, int r);
</pre>
<pre>VFMSUBxxxPS __m512 _mm512_mask_fmsub_ps(__m512 a, __mmask16 k, __m512 b, __m512 c);
</pre>
<pre>VFMSUBxxxPS __m512 _mm512_maskz_fmsub_ps(__mmask16 k, __m512 a, __m512 b, __m512 c);
</pre>
<pre>VFMSUBxxxPS __m512 _mm512_mask3_fmsub_ps(__m512 a, __m512 b, __m512 c, __mmask16 k);
</pre>
<pre>VFMSUBxxxPS __m512 _mm512_mask_fmsub_round_ps(__m512 a, __mmask16 k, __m512 b, __m512 c, int r);
</pre>
<pre>VFMSUBxxxPS __m512 _mm512_maskz_fmsub_round_ps(__mmask16 k, __m512 a, __m512 b, __m512 c, int r);
</pre>
<pre>VFMSUBxxxPS __m512 _mm512_mask3_fmsub_round_ps(__m512 a, __m512 b, __m512 c, __mmask16 k, int r);
</pre>
<pre>VFMSUBxxxPS __m256 _mm256_mask_fmsub_ps(__m256 a, __mmask8 k, __m256 b, __m256 c);
</pre>
<pre>VFMSUBxxxPS __m256 _mm256_maskz_fmsub_ps(__mmask8 k, __m256 a, __m256 b, __m256 c);
</pre>
<pre>VFMSUBxxxPS __m256 _mm256_mask3_fmsub_ps(__m256 a, __m256 b, __m256 c, __mmask8 k);
</pre>
<pre>VFMSUBxxxPS __m128 _mm_mask_fmsub_ps(__m128 a, __mmask8 k, __m128 b, __m128 c);
</pre>
<pre>VFMSUBxxxPS __m128 _mm_maskz_fmsub_ps(__mmask8 k, __m128 a, __m128 b, __m128 c);
</pre>
<pre>VFMSUBxxxPS __m128 _mm_mask3_fmsub_ps(__m128 a, __m128 b, __m128 c, __mmask8 k);
</pre>
<pre>VFMSUBxxxPS __m128 _mm_fmsub_ps (__m128 a, __m128 b, __m128 c);
</pre>
<pre>VFMSUBxxxPS __m256 _mm256_fmsub_ps (__m256 a, __m256 b, __m256 c);
</pre>
<h3 class="exceptions" id="simd-floating-point-exceptions">SIMD Floating-Point Exceptions<a class="anchor" href="#simd-floating-point-exceptions">
</a></h3>
<p>Overflow, Underflow, Invalid, Precision, Denormal.</p>
<h3 class="exceptions" id="other-exceptions">Other Exceptions<a class="anchor" href="#other-exceptions">
</a></h3>
<p>VEX-encoded instructions, see <span class="not-imported">Table 2-19</span>, “Type 2 Class Exception Conditions.”</p>
<p>EVEX-encoded instructions, see <span class="not-imported">Table 2-46</span>, “Type E2 Class Exception Conditions.”</p><footer><p>
This UNOFFICIAL, mechanically-separated, non-verified reference is provided for convenience, but it may be
inc<span style="opacity: 0.2">omp</span>lete or b<sub>r</sub>oke<sub>n</sub> in various obvious or non-obvious
ways. Refer to <a href="https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4">Intel® 64 and IA-32 Architectures Software Developers Manual</a> for anything serious.
</p></footer></body></html>