forked from NRZCode/ia32-64
192 lines
8.9 KiB
HTML
192 lines
8.9 KiB
HTML
<!DOCTYPE html>
|
||
<html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xmlns:x86="http://www.felixcloutier.com/x86"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><link rel="stylesheet" type="text/css" href="style.css"></link><title>DIVPS
|
||
— Divide Packed Single Precision Floating-Point Values</title></head><body><header><nav><ul><li><a href='index.html'>Index</a></li><li>December 2023</li></ul></nav></header><h1>DIVPS
|
||
— Divide Packed Single Precision Floating-Point Values</h1>
|
||
|
||
<table>
|
||
<tr>
|
||
<th>Opcode/Instruction</th>
|
||
<th>Op / En</th>
|
||
<th>64/32 bit Mode Support</th>
|
||
<th>CPUID Feature Flag</th>
|
||
<th>Description</th></tr>
|
||
<tr>
|
||
<td>NP 0F 5E /r DIVPS xmm1, xmm2/m128</td>
|
||
<td>A</td>
|
||
<td>V/V</td>
|
||
<td>SSE</td>
|
||
<td>Divide packed single precision floating-point values in xmm1 by packed single precision floating-point values in xmm2/mem.</td></tr>
|
||
<tr>
|
||
<td>VEX.128.0F.WIG 5E /r VDIVPS xmm1, xmm2, xmm3/m128</td>
|
||
<td>B</td>
|
||
<td>V/V</td>
|
||
<td>AVX</td>
|
||
<td>Divide packed single precision floating-point values in xmm2 by packed single precision floating-point values in xmm3/mem.</td></tr>
|
||
<tr>
|
||
<td>VEX.256.0F.WIG 5E /r VDIVPS ymm1, ymm2, ymm3/m256</td>
|
||
<td>B</td>
|
||
<td>V/V</td>
|
||
<td>AVX</td>
|
||
<td>Divide packed single precision floating-point values in ymm2 by packed single precision floating-point values in ymm3/mem.</td></tr>
|
||
<tr>
|
||
<td>EVEX.128.0F.W0 5E /r VDIVPS xmm1 {k1}{z}, xmm2, xmm3/m128/m32bcst</td>
|
||
<td>C</td>
|
||
<td>V/V</td>
|
||
<td>AVX512VL AVX512F</td>
|
||
<td>Divide packed single precision floating-point values in xmm2 by packed single precision floating-point values in xmm3/m128/m32bcst and write results to xmm1 subject to writemask k1.</td></tr>
|
||
<tr>
|
||
<td>EVEX.256.0F.W0 5E /r VDIVPS ymm1 {k1}{z}, ymm2, ymm3/m256/m32bcst</td>
|
||
<td>C</td>
|
||
<td>V/V</td>
|
||
<td>AVX512VL AVX512F</td>
|
||
<td>Divide packed single precision floating-point values in ymm2 by packed single precision floating-point values in ymm3/m256/m32bcst and write results to ymm1 subject to writemask k1.</td></tr>
|
||
<tr>
|
||
<td>EVEX.512.0F.W0 5E /r VDIVPS zmm1 {k1}{z}, zmm2, zmm3/m512/m32bcst{er}</td>
|
||
<td>C</td>
|
||
<td>V/V</td>
|
||
<td>AVX512F</td>
|
||
<td>Divide packed single precision floating-point values in zmm2 by packed single precision floating-point values in zmm3/m512/m32bcst and write results to zmm1 subject to writemask k1.</td></tr></table>
|
||
<h2 id="instruction-operand-encoding">Instruction Operand Encoding<a class="anchor" href="#instruction-operand-encoding">
|
||
¶
|
||
</a></h2>
|
||
<table>
|
||
<tr>
|
||
<th>Op/En</th>
|
||
<th>Tuple Type</th>
|
||
<th>Operand 1</th>
|
||
<th>Operand 2</th>
|
||
<th>Operand 3</th>
|
||
<th>Operand 4</th></tr>
|
||
<tr>
|
||
<td>A</td>
|
||
<td>N/A</td>
|
||
<td>ModRM:reg (r, w)</td>
|
||
<td>ModRM:r/m (r)</td>
|
||
<td>N/A</td>
|
||
<td>N/A</td></tr>
|
||
<tr>
|
||
<td>B</td>
|
||
<td>N/A</td>
|
||
<td>ModRM:reg (w)</td>
|
||
<td>VEX.vvvv (r)</td>
|
||
<td>ModRM:r/m (r)</td>
|
||
<td>N/A</td></tr>
|
||
<tr>
|
||
<td>C</td>
|
||
<td>Full</td>
|
||
<td>ModRM:reg (w)</td>
|
||
<td>EVEX.vvvv (r)</td>
|
||
<td>ModRM:r/m (r)</td>
|
||
<td>N/A</td></tr></table>
|
||
<h2 id="description">Description<a class="anchor" href="#description">
|
||
¶
|
||
</a></h2>
|
||
<p>Performs a SIMD divide of the four, eight or sixteen packed single precision floating-point values in the first source operand (the second operand) by the four, eight or sixteen packed single precision floating-point values in the second source operand (the third operand). Results are written to the destination operand (the first operand).</p>
|
||
<p>EVEX encoded versions: The first source operand (the second operand) is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1.</p>
|
||
<p>VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register.</p>
|
||
<p>VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are zeroed.</p>
|
||
<p>128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding ZMM register destination are unmodified.</p>
|
||
<h2 id="operation">Operation<a class="anchor" href="#operation">
|
||
¶
|
||
</a></h2>
|
||
<h3 id="vdivps--evex-encoded-versions-">VDIVPS (EVEX Encoded Versions)<a class="anchor" href="#vdivps--evex-encoded-versions-">
|
||
¶
|
||
</a></h3>
|
||
<pre>(KL, VL) = (4, 128), (8, 256), (16, 512)
|
||
IF (VL = 512) AND (EVEX.b = 1) AND SRC2 *is a register*
|
||
THEN
|
||
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC);
|
||
ELSE
|
||
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);
|
||
FI;
|
||
FOR j := 0 TO KL-1
|
||
i := j * 32
|
||
IF k1[j] OR *no writemask*
|
||
THEN
|
||
IF (EVEX.b = 1) AND (SRC2 *is memory*)
|
||
THEN
|
||
DEST[i+31:i] := SRC1[i+31:i] / SRC2[31:0]
|
||
ELSE
|
||
DEST[i+31:i] := SRC1[i+31:i] / SRC2[i+31:i]
|
||
FI;
|
||
ELSE
|
||
IF *merging-masking* ; merging-masking
|
||
THEN *DEST[i+31:i] remains unchanged*
|
||
ELSE ; zeroing-masking
|
||
DEST[i+31:i] := 0
|
||
FI
|
||
FI;
|
||
ENDFOR
|
||
DEST[MAXVL-1:VL] := 0
|
||
</pre>
|
||
<h3 id="vdivps--vex-256-encoded-version-">VDIVPS (VEX.256 Encoded Version)<a class="anchor" href="#vdivps--vex-256-encoded-version-">
|
||
¶
|
||
</a></h3>
|
||
<pre>DEST[31:0] := SRC1[31:0] / SRC2[31:0]
|
||
DEST[63:32] := SRC1[63:32] / SRC2[63:32]
|
||
DEST[95:64] := SRC1[95:64] / SRC2[95:64]
|
||
DEST[127:96] := SRC1[127:96] / SRC2[127:96]
|
||
DEST[159:128] := SRC1[159:128] / SRC2[159:128]
|
||
DEST[191:160] := SRC1[191:160] / SRC2[191:160]
|
||
DEST[223:192] := SRC1[223:192] / SRC2[223:192]
|
||
DEST[255:224] := SRC1[255:224] / SRC2[255:224].
|
||
DEST[MAXVL-1:256] := 0;
|
||
</pre>
|
||
<h3 id="vdivps--vex-128-encoded-version-">VDIVPS (VEX.128 Encoded Version)<a class="anchor" href="#vdivps--vex-128-encoded-version-">
|
||
¶
|
||
</a></h3>
|
||
<pre>DEST[31:0] := SRC1[31:0] / SRC2[31:0]
|
||
DEST[63:32] := SRC1[63:32] / SRC2[63:32]
|
||
DEST[95:64] := SRC1[95:64] / SRC2[95:64]
|
||
DEST[127:96] := SRC1[127:96] / SRC2[127:96]
|
||
DEST[MAXVL-1:128] := 0
|
||
</pre>
|
||
<h3 id="divps--128-bit-legacy-sse-version-">DIVPS (128-bit Legacy SSE Version)<a class="anchor" href="#divps--128-bit-legacy-sse-version-">
|
||
¶
|
||
</a></h3>
|
||
<pre>DEST[31:0] := SRC1[31:0] / SRC2[31:0]
|
||
DEST[63:32] := SRC1[63:32] / SRC2[63:32]
|
||
DEST[95:64] := SRC1[95:64] / SRC2[95:64]
|
||
DEST[127:96] := SRC1[127:96] / SRC2[127:96]
|
||
DEST[MAXVL-1:128] (Unmodified)
|
||
</pre>
|
||
<h2 id="intel-c-c++-compiler-intrinsic-equivalent">Intel C/C++ Compiler Intrinsic Equivalent<a class="anchor" href="#intel-c-c++-compiler-intrinsic-equivalent">
|
||
¶
|
||
</a></h2>
|
||
<pre>VDIVPS __m512 _mm512_div_ps( __m512 a, __m512 b);
|
||
</pre>
|
||
<pre>VDIVPS __m512 _mm512_mask_div_ps(__m512 s, __mmask16 k, __m512 a, __m512 b);
|
||
</pre>
|
||
<pre>VDIVPS __m512 _mm512_maskz_div_ps(__mmask16 k, __m512 a, __m512 b);
|
||
</pre>
|
||
<pre>VDIVPD __m256d _mm256_mask_div_pd(__m256d s, __mmask8 k, __m256d a, __m256d b);
|
||
</pre>
|
||
<pre>VDIVPD __m256d _mm256_maskz_div_pd( __mmask8 k, __m256d a, __m256d b);
|
||
</pre>
|
||
<pre>VDIVPD __m128d _mm_mask_div_pd(__m128d s, __mmask8 k, __m128d a, __m128d b);
|
||
</pre>
|
||
<pre>VDIVPD __m128d _mm_maskz_div_pd( __mmask8 k, __m128d a, __m128d b);
|
||
</pre>
|
||
<pre>VDIVPS __m512 _mm512_div_round_ps( __m512 a, __m512 b, int);
|
||
</pre>
|
||
<pre>VDIVPS __m512 _mm512_mask_div_round_ps(__m512 s, __mmask16 k, __m512 a, __m512 b, int);
|
||
</pre>
|
||
<pre>VDIVPS __m512 _mm512_maskz_div_round_ps(__mmask16 k, __m512 a, __m512 b, int);
|
||
</pre>
|
||
<pre>VDIVPS __m256 _mm256_div_ps (__m256 a, __m256 b);
|
||
</pre>
|
||
<pre>DIVPS __m128 _mm_div_ps (__m128 a, __m128 b);
|
||
</pre>
|
||
<h2 class="exceptions" id="simd-floating-point-exceptions">SIMD Floating-Point Exceptions<a class="anchor" href="#simd-floating-point-exceptions">
|
||
¶
|
||
</a></h2>
|
||
<p>Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.</p>
|
||
<h2 class="exceptions" id="other-exceptions">Other Exceptions<a class="anchor" href="#other-exceptions">
|
||
¶
|
||
</a></h2>
|
||
<p>VEX-encoded instructions, see <span class="not-imported">Table 2-19</span>, “Type 2 Class Exception Conditions.”</p>
|
||
<p>EVEX-encoded instructions, see <span class="not-imported">Table 2-46</span>, “Type E2 Class Exception Conditions.”</p><footer><p>
|
||
This UNOFFICIAL, mechanically-separated, non-verified reference is provided for convenience, but it may be
|
||
inc<span style="opacity: 0.2">omp</span>lete or b<sub>r</sub>oke<sub>n</sub> in various obvious or non-obvious
|
||
ways. Refer to <a href="https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4">Intel® 64 and IA-32 Architectures Software Developer’s Manual</a> for anything serious.
|
||
</p></footer></body></html>
|