ia32-64/x86/divpd.html
2025-07-08 02:23:29 -03:00

185 lines
8.7 KiB
HTML
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xmlns:x86="http://www.felixcloutier.com/x86"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><link rel="stylesheet" type="text/css" href="style.css"></link><title>DIVPD
— Divide Packed Double Precision Floating-Point Values</title></head><body><header><nav><ul><li><a href='index.html'>Index</a></li><li>December 2023</li></ul></nav></header><h1>DIVPD
— Divide Packed Double Precision Floating-Point Values</h1>
<table>
<tr>
<th>Opcode/Instruction</th>
<th>Op / En</th>
<th>64/32 bit Mode Support</th>
<th>CPUID Feature Flag</th>
<th>Description</th></tr>
<tr>
<td>66 0F 5E /r DIVPD xmm1, xmm2/m128</td>
<td>A</td>
<td>V/V</td>
<td>SSE2</td>
<td>Divide packed double precision floating-point values in xmm1 by packed double precision floating-point values in xmm2/mem.</td></tr>
<tr>
<td>VEX.128.66.0F.WIG 5E /r VDIVPD xmm1, xmm2, xmm3/m128</td>
<td>B</td>
<td>V/V</td>
<td>AVX</td>
<td>Divide packed double precision floating-point values in xmm2 by packed double precision floating-point values in xmm3/mem.</td></tr>
<tr>
<td>VEX.256.66.0F.WIG 5E /r VDIVPD ymm1, ymm2, ymm3/m256</td>
<td>B</td>
<td>V/V</td>
<td>AVX</td>
<td>Divide packed double precision floating-point values in ymm2 by packed double precision floating-point values in ymm3/mem.</td></tr>
<tr>
<td>EVEX.128.66.0F.W1 5E /r VDIVPD xmm1 {k1}{z}, xmm2, xmm3/m128/m64bcst</td>
<td>C</td>
<td>V/V</td>
<td>AVX512VL AVX512F</td>
<td>Divide packed double precision floating-point values in xmm2 by packed double precision floating-point values in xmm3/m128/m64bcst and write results to xmm1 subject to writemask k1.</td></tr>
<tr>
<td>EVEX.256.66.0F.W1 5E /r VDIVPD ymm1 {k1}{z}, ymm2, ymm3/m256/m64bcst</td>
<td>C</td>
<td>V/V</td>
<td>AVX512VL AVX512F</td>
<td>Divide packed double precision floating-point values in ymm2 by packed double precision floating-point values in ymm3/m256/m64bcst and write results to ymm1 subject to writemask k1.</td></tr>
<tr>
<td>EVEX.512.66.0F.W1 5E /r VDIVPD zmm1 {k1}{z}, zmm2, zmm3/m512/m64bcst{er}</td>
<td>C</td>
<td>V/V</td>
<td>AVX512F</td>
<td>Divide packed double precision floating-point values in zmm2 by packed double precision floating-point values in zmm3/m512/m64bcst and write results to zmm1 subject to writemask k1.</td></tr></table>
<h2 id="instruction-operand-encoding">Instruction Operand Encoding<a class="anchor" href="#instruction-operand-encoding">
</a></h2>
<table>
<tr>
<th>Op/En</th>
<th>Tuple Type</th>
<th>Operand 1</th>
<th>Operand 2</th>
<th>Operand 3</th>
<th>Operand 4</th></tr>
<tr>
<td>A</td>
<td>N/A</td>
<td>ModRM:reg (r, w)</td>
<td>ModRM:r/m (r)</td>
<td>N/A</td>
<td>N/A</td></tr>
<tr>
<td>B</td>
<td>N/A</td>
<td>ModRM:reg (w)</td>
<td>VEX.vvvv (r)</td>
<td>ModRM:r/m (r)</td>
<td>N/A</td></tr>
<tr>
<td>C</td>
<td>Full</td>
<td>ModRM:reg (w)</td>
<td>EVEX.vvvv (r)</td>
<td>ModRM:r/m (r)</td>
<td>N/A</td></tr></table>
<h2 id="description">Description<a class="anchor" href="#description">
</a></h2>
<p>Performs a SIMD divide of the double precision floating-point values in the first source operand by the floating-point values in the second source operand (the third operand). Results are written to the destination operand (the first operand).</p>
<p>EVEX encoded versions: The first source operand (the second operand) is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1.</p>
<p>VEX.256 encoded version: The first source operand (the second operand) is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of the corresponding destination are zeroed.</p>
<p>VEX.128 encoded version: The first source operand (the second operand) is a XMM register. The second source operand can be a XMM register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:128) of the corresponding destination are zeroed.</p>
<p>128-bit Legacy SSE version: The second source operand (the second operand) can be an XMM register or an 128-bit memory location. The destination is the same as the first source operand. The upper bits (MAXVL-1:128) of the corresponding destination are unmodified.</p>
<h2 id="operation">Operation<a class="anchor" href="#operation">
</a></h2>
<h3 id="vdivpd--evex-encoded-versions-">VDIVPD (EVEX Encoded Versions)<a class="anchor" href="#vdivpd--evex-encoded-versions-">
</a></h3>
<pre>(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1) AND SRC2 *is a register*
THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC); ; refer to <span class="not-imported">Table 15-4</span> in the Intel<sup>®</sup> 64 and IA-32 Architectures
Software Developers Manual, Volume 1
ELSE
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);
FI;
FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN
DEST[i+63:i] := SRC1[i+63:i] / SRC2[63:0]
ELSE
DEST[i+63:i] := SRC1[i+63:i] / SRC2[i+63:i]
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] := 0
FI
FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
</pre>
<h3 id="vdivpd--vex-256-encoded-version-">VDIVPD (VEX.256 Encoded Version)<a class="anchor" href="#vdivpd--vex-256-encoded-version-">
</a></h3>
<pre>DEST[63:0] := SRC1[63:0] / SRC2[63:0]
DEST[127:64] := SRC1[127:64] / SRC2[127:64]
DEST[191:128] := SRC1[191:128] / SRC2[191:128]
DEST[255:192] := SRC1[255:192] / SRC2[255:192]
DEST[MAXVL-1:256] := 0;
</pre>
<h3 id="vdivpd--vex-128-encoded-version-">VDIVPD (VEX.128 Encoded Version)<a class="anchor" href="#vdivpd--vex-128-encoded-version-">
</a></h3>
<pre>DEST[63:0] := SRC1[63:0] / SRC2[63:0]
DEST[127:64] := SRC1[127:64] / SRC2[127:64]
DEST[MAXVL-1:128] := 0;
</pre>
<h3 id="divpd--128-bit-legacy-sse-version-">DIVPD (128-bit Legacy SSE Version)<a class="anchor" href="#divpd--128-bit-legacy-sse-version-">
</a></h3>
<pre>DEST[63:0] := SRC1[63:0] / SRC2[63:0]
DEST[127:64] := SRC1[127:64] / SRC2[127:64]
DEST[MAXVL-1:128] (Unmodified)
</pre>
<h2 id="intel-c-c++-compiler-intrinsic-equivalent">Intel C/C++ Compiler Intrinsic Equivalent<a class="anchor" href="#intel-c-c++-compiler-intrinsic-equivalent">
</a></h2>
<pre>VDIVPD __m512d _mm512_div_pd( __m512d a, __m512d b);
</pre>
<pre>VDIVPD __m512d _mm512_mask_div_pd(__m512d s, __mmask8 k, __m512d a, __m512d b);
</pre>
<pre>VDIVPD __m512d _mm512_maskz_div_pd( __mmask8 k, __m512d a, __m512d b);
</pre>
<pre>VDIVPD __m256d _mm256_mask_div_pd(__m256d s, __mmask8 k, __m256d a, __m256d b);
</pre>
<pre>VDIVPD __m256d _mm256_maskz_div_pd( __mmask8 k, __m256d a, __m256d b);
</pre>
<pre>VDIVPD __m128d _mm_mask_div_pd(__m128d s, __mmask8 k, __m128d a, __m128d b);
</pre>
<pre>VDIVPD __m128d _mm_maskz_div_pd( __mmask8 k, __m128d a, __m128d b);
</pre>
<pre>VDIVPD __m512d _mm512_div_round_pd( __m512d a, __m512d b, int);
</pre>
<pre>VDIVPD __m512d _mm512_mask_div_round_pd(__m512d s, __mmask8 k, __m512d a, __m512d b, int);
</pre>
<pre>VDIVPD __m512d _mm512_maskz_div_round_pd( __mmask8 k, __m512d a, __m512d b, int);
</pre>
<pre>VDIVPD __m256d _mm256_div_pd (__m256d a, __m256d b);
</pre>
<pre>DIVPD __m128d _mm_div_pd (__m128d a, __m128d b);
</pre>
<h2 class="exceptions" id="simd-floating-point-exceptions">SIMD Floating-Point Exceptions<a class="anchor" href="#simd-floating-point-exceptions">
</a></h2>
<p>Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.</p>
<h2 class="exceptions" id="other-exceptions">Other Exceptions<a class="anchor" href="#other-exceptions">
</a></h2>
<p>VEX-encoded instructions, see <span class="not-imported">Table 2-19</span>, “Type 2 Class Exception Conditions.”</p>
<p>EVEX-encoded instructions, see <span class="not-imported">Table 2-46</span>, “Type E2 Class Exception Conditions.”</p><footer><p>
This UNOFFICIAL, mechanically-separated, non-verified reference is provided for convenience, but it may be
inc<span style="opacity: 0.2">omp</span>lete or b<sub>r</sub>oke<sub>n</sub> in various obvious or non-obvious
ways. Refer to <a href="https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4">Intel® 64 and IA-32 Architectures Software Developers Manual</a> for anything serious.
</p></footer></body></html>