ia32-64/x86/vexpandpd.html

127 lines
5.7 KiB
HTML
Raw Normal View History

2025-07-08 02:23:29 -03:00
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xmlns:x86="http://www.felixcloutier.com/x86"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><link rel="stylesheet" type="text/css" href="style.css"></link><title>VEXPANDPD
— Load Sparse Packed Double Precision Floating-Point Values From Dense Memory</title></head><body><header><nav><ul><li><a href='index.html'>Index</a></li><li>December 2023</li></ul></nav></header><h1>VEXPANDPD
— Load Sparse Packed Double Precision Floating-Point Values From Dense Memory</h1>
<table>
<tr>
<th>Opcode/Instruction</th>
<th>Op/En</th>
<th>64/32 Bit Mode Support</th>
<th>CPUID Feature Flag</th>
<th>Description</th></tr>
<tr>
<td>EVEX.128.66.0F38.W1 88 /r VEXPANDPD xmm1 {k1}{z}, xmm2/m128</td>
<td>A</td>
<td>V/V</td>
<td>AVX512VL AVX512F</td>
<td>Expand packed double precision floating-point values from xmm2/m128 to xmm1 using writemask k1.</td></tr>
<tr>
<td>EVEX.256.66.0F38.W1 88 /r VEXPANDPD ymm1 {k1}{z}, ymm2/m256</td>
<td>A</td>
<td>V/V</td>
<td>AVX512VL AVX512F</td>
<td>Expand packed double precision floating-point values from ymm2/m256 to ymm1 using writemask k1.</td></tr>
<tr>
<td>EVEX.512.66.0F38.W1 88 /r VEXPANDPD zmm1 {k1}{z}, zmm2/m512</td>
<td>A</td>
<td>V/V</td>
<td>AVX512F</td>
<td>Expand packed double precision floating-point values from zmm2/m512 to zmm1 using writemask k1.</td></tr></table>
<h2 id="instruction-operand-encoding">Instruction Operand Encoding<a class="anchor" href="#instruction-operand-encoding">
</a></h2>
<table>
<tr>
<th>Op/En</th>
<th>Tuple Type</th>
<th>Operand 1</th>
<th>Operand 2</th>
<th>Operand 3</th>
<th>Operand 4</th></tr>
<tr>
<td>A</td>
<td>Tuple1 Scalar</td>
<td>ModRM:reg (w)</td>
<td>ModRM:r/m (r)</td>
<td>N/A</td>
<td>N/A</td></tr></table>
<h3 id="description">Description<a class="anchor" href="#description">
</a></h3>
<p>Expand (load) up to 8/4/2, contiguous, double precision floating-point values of the input vector in the source operand (the second operand) to sparse elements in the destination operand (the first operand) selected by the writemask k1.</p>
<p>The destination operand is a ZMM/YMM/XMM register, the source operand can be a ZMM/YMM/XMM register or a 512/256/128-bit memory location.</p>
<p>The input vector starts from the lowest element in the source operand. The writemask register k1 selects the destination elements (a partial vector or sparse elements if less than 8 elements) to be replaced by the ascending elements in the input vector. Destination elements not selected by the writemask k1 are either unmodified or zeroed, depending on EVEX.z.</p>
<p>EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.</p>
<p>Note that the compressed displacement assumes a pre-scaling (N) corresponding to the size of one single element instead of the size of the full vector.</p>
<h3 id="operation">Operation<a class="anchor" href="#operation">
</a></h3>
<h4 id="vexpandpd--evex-encoded-versions-">VEXPANDPD (EVEX Encoded Versions)<a class="anchor" href="#vexpandpd--evex-encoded-versions-">
</a></h4>
<pre>(KL, VL) = (2, 128), (4, 256), (8, 512)
k := 0
FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*
THEN
DEST[i+63:i] := SRC[k+63:k];
k := k + 64
ELSE
IF *merging-masking*
; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE
; zeroing-masking
THEN DEST[i+63:i] := 0
FI
FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
</pre>
<h3 id="intel-c-c++-compiler-intrinsic-equivalent">Intel C/C++ Compiler Intrinsic Equivalent<a class="anchor" href="#intel-c-c++-compiler-intrinsic-equivalent">
</a></h3>
<pre>VEXPANDPD __m512d _mm512_mask_expand_pd( __m512d s, __mmask8 k, __m512d a);
</pre>
<pre>VEXPANDPD __m512d _mm512_maskz_expand_pd( __mmask8 k, __m512d a);
</pre>
<pre>VEXPANDPD __m512d _mm512_mask_expandloadu_pd( __m512d s, __mmask8 k, void * a);
</pre>
<pre>VEXPANDPD __m512d _mm512_maskz_expandloadu_pd( __mmask8 k, void * a);
</pre>
<pre>VEXPANDPD __m256d _mm256_mask_expand_pd( __m256d s, __mmask8 k, __m256d a);
</pre>
<pre>VEXPANDPD __m256d _mm256_maskz_expand_pd( __mmask8 k, __m256d a);
</pre>
<pre>VEXPANDPD __m256d _mm256_mask_expandloadu_pd( __m256d s, __mmask8 k, void * a);
</pre>
<pre>VEXPANDPD __m256d _mm256_maskz_expandloadu_pd( __mmask8 k, void * a);
</pre>
<pre>VEXPANDPD __m128d _mm_mask_expand_pd( __m128d s, __mmask8 k, __m128d a);
</pre>
<pre>VEXPANDPD __m128d _mm_maskz_expand_pd( __mmask8 k, __m128d a);
</pre>
<pre>VEXPANDPD __m128d _mm_mask_expandloadu_pd( __m128d s, __mmask8 k, void * a);
</pre>
<pre>VEXPANDPD __m128d _mm_maskz_expandloadu_pd( __mmask8 k, void * a);
</pre>
<h3 class="exceptions" id="simd-floating-point-exceptions">SIMD Floating-Point Exceptions<a class="anchor" href="#simd-floating-point-exceptions">
</a></h3>
<p>None.</p>
<h3 class="exceptions" id="other-exceptions">Other Exceptions<a class="anchor" href="#other-exceptions">
</a></h3>
<p>See Exceptions Type E4.nb in <span class="not-imported">Table 2-49</span>, “Type E4 Class Exception Conditions.”</p>
<p>Additionally:</p>
<table>
<tr>
<td>#UD</td>
<td>If EVEX.vvvv != 1111B.</td></tr></table><footer><p>
This UNOFFICIAL, mechanically-separated, non-verified reference is provided for convenience, but it may be
inc<span style="opacity: 0.2">omp</span>lete or b<sub>r</sub>oke<sub>n</sub> in various obvious or non-obvious
ways. Refer to <a href="https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4">Intel® 64 and IA-32 Architectures Software Developers Manual</a> for anything serious.
</p></footer></body></html>