ia32-64/x86/pminud.pminuq.html

263 lines
11 KiB
HTML
Raw Normal View History

2025-07-08 02:23:29 -03:00
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xmlns:x86="http://www.felixcloutier.com/x86"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><link rel="stylesheet" type="text/css" href="style.css"></link><title>PMINUD/PMINUQ
— Minimum of Packed Unsigned Integers</title></head><body><header><nav><ul><li><a href='index.html'>Index</a></li><li>December 2023</li></ul></nav></header><h1>PMINUD/PMINUQ
— Minimum of Packed Unsigned Integers</h1>
<table>
<tr>
<th>Opcode/Instruction</th>
<th>Op/E n</th>
<th>64/32 bit Mode Support</th>
<th>CPUID Feature Flag</th>
<th>Description</th></tr>
<tr>
<td>66 0F 38 3B /r PMINUD xmm1, xmm2/m128</td>
<td>A</td>
<td>V/V</td>
<td>SSE4_1</td>
<td>Compare packed unsigned dword integers in xmm1 and xmm2/m128 and store packed minimum values in xmm1.</td></tr>
<tr>
<td>VEX.128.66.0F38.WIG 3B /r VPMINUD xmm1, xmm2, xmm3/m128</td>
<td>B</td>
<td>V/V</td>
<td>AVX</td>
<td>Compare packed unsigned dword integers in xmm2 and xmm3/m128 and store packed minimum values in xmm1.</td></tr>
<tr>
<td>VEX.256.66.0F38.WIG 3B /r VPMINUD ymm1, ymm2, ymm3/m256</td>
<td>B</td>
<td>V/V</td>
<td>AVX2</td>
<td>Compare packed unsigned dword integers in ymm2 and ymm3/m256 and store packed minimum values in ymm1.</td></tr>
<tr>
<td>EVEX.128.66.0F38.W0 3B /r VPMINUD xmm1 {k1}{z}, xmm2, xmm3/m128/m32bcst</td>
<td>C</td>
<td>V/V</td>
<td>AVX512VL AVX512F</td>
<td>Compare packed unsigned dword integers in xmm2 and xmm3/m128/m32bcst and store packed minimum values in xmm1 under writemask k1.</td></tr>
<tr>
<td>EVEX.256.66.0F38.W0 3B /r VPMINUD ymm1 {k1}{z}, ymm2, ymm3/m256/m32bcst</td>
<td>C</td>
<td>V/V</td>
<td>AVX512VL AVX512F</td>
<td>Compare packed unsigned dword integers in ymm2 and ymm3/m256/m32bcst and store packed minimum values in ymm1 under writemask k1.</td></tr>
<tr>
<td>EVEX.512.66.0F38.W0 3B /r VPMINUD zmm1 {k1}{z}, zmm2, zmm3/m512/m32bcst</td>
<td>C</td>
<td>V/V</td>
<td>AVX512F</td>
<td>Compare packed unsigned dword integers in zmm2 and zmm3/m512/m32bcst and store packed minimum values in zmm1 under writemask k1.</td></tr>
<tr>
<td>EVEX.128.66.0F38.W1 3B /r VPMINUQ xmm1 {k1}{z}, xmm2, xmm3/m128/m64bcst</td>
<td>C</td>
<td>V/V</td>
<td>AVX512VL AVX512F</td>
<td>Compare packed unsigned qword integers in xmm2 and xmm3/m128/m64bcst and store packed minimum values in xmm1 under writemask k1.</td></tr>
<tr>
<td>EVEX.256.66.0F38.W1 3B /r VPMINUQ ymm1 {k1}{z}, ymm2, ymm3/m256/m64bcst</td>
<td>C</td>
<td>V/V</td>
<td>AVX512VL AVX512F</td>
<td>Compare packed unsigned qword integers in ymm2 and ymm3/m256/m64bcst and store packed minimum values in ymm1 under writemask k1.</td></tr>
<tr>
<td>EVEX.512.66.0F38.W1 3B /r VPMINUQ zmm1 {k1}{z}, zmm2, zmm3/m512/m64bcst</td>
<td>C</td>
<td>V/V</td>
<td>AVX512F</td>
<td>Compare packed unsigned qword integers in zmm2 and zmm3/m512/m64bcst and store packed minimum values in zmm1 under writemask k1.</td></tr></table>
<h2 id="instruction-operand-encoding">Instruction Operand Encoding<a class="anchor" href="#instruction-operand-encoding">
</a></h2>
<table>
<tr>
<th>Op/En</th>
<th>Tuple Type</th>
<th>Operand 1</th>
<th>Operand 2</th>
<th>Operand 3</th>
<th>Operand 4</th></tr>
<tr>
<td>A</td>
<td>N/A</td>
<td>ModRM:reg (r, w)</td>
<td>ModRM:r/m (r)</td>
<td>N/A</td>
<td>N/A</td></tr>
<tr>
<td>B</td>
<td>N/A</td>
<td>ModRM:reg (w)</td>
<td>VEX.vvvv (r)</td>
<td>ModRM:r/m (r)</td>
<td>N/A</td></tr>
<tr>
<td>C</td>
<td>Full</td>
<td>ModRM:reg (w)</td>
<td>EVEX.vvvv (r)</td>
<td>ModRM:r/m (r)</td>
<td>N/A</td></tr></table>
<h2 id="description">Description<a class="anchor" href="#description">
</a></h2>
<p>Performs a SIMD compare of the packed unsigned dword/qword integers in the second source operand and the first source operand and returns the minimum value for each pair of integers to the destination operand.</p>
<p>128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding destination register remain unchanged.</p>
<p>VEX.128 encoded version: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding destination register are zeroed.</p>
<p>VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The first source and destination operands are YMM registers. Bits (MAXVL-1:256) of the corresponding destination register are zeroed.</p>
<p>EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register; The second source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 32/64-bit memory location. The destination operand is conditionally updated based on writemask k1.</p>
<h2 id="operation">Operation<a class="anchor" href="#operation">
</a></h2>
<h3 id="pminud--128-bit-legacy-sse-version-">PMINUD (128-bit Legacy SSE Version)<a class="anchor" href="#pminud--128-bit-legacy-sse-version-">
</a></h3>
<pre>PMINUD instruction for 128-bit operands:
IF DEST[31:0] &lt; SRC[31:0] THEN
DEST[31:0] := DEST[31:0];
ELSE
DEST[31:0] := SRC[31:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:96] &lt; SRC[127:96] THEN
DEST[127:96] := DEST[127:96];
ELSE
DEST[127:96] := SRC[127:96]; FI;
DEST[MAXVL-1:128] (Unmodified)
</pre>
<h3 id="vpminud--vex-128-encoded-version-">VPMINUD (VEX.128 Encoded Version)<a class="anchor" href="#vpminud--vex-128-encoded-version-">
</a></h3>
<pre>VPMINUD instruction for 128-bit operands:
IF SRC1[31:0] &lt; SRC2[31:0] THEN
DEST[31:0] := SRC1[31:0];
ELSE
DEST[31:0] := SRC2[31:0]; FI;
(* Repeat operation for 2nd through 3rd dwords in source and destination operands *)
IF SRC1[127:96] &lt; SRC2[127:96] THEN
DEST[127:96] := SRC1[127:96];
ELSE
DEST[127:96] := SRC2[127:96]; FI;
DEST[MAXVL-1:128] := 0
</pre>
<h3 id="vpminud--vex-256-encoded-version-">VPMINUD (VEX.256 Encoded Version)<a class="anchor" href="#vpminud--vex-256-encoded-version-">
</a></h3>
<pre>VPMINUD instruction for 128-bit operands:
IF SRC1[31:0] &lt; SRC2[31:0] THEN
DEST[31:0] := SRC1[31:0];
ELSE
DEST[31:0] := SRC2[31:0]; FI;
(* Repeat operation for 2nd through 7th dwords in source and destination operands *)
IF SRC1[255:224] &lt; SRC2[255:224] THEN
DEST[255:224] := SRC1[255:224];
ELSE
DEST[255:224] := SRC2[255:224]; FI;
DEST[MAXVL-1:256] := 0
</pre>
<h3 id="vpminud--evex-encoded-versions-">VPMINUD (EVEX Encoded Versions)<a class="anchor" href="#vpminud--evex-encoded-versions-">
</a></h3>
<pre>(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN
IF SRC1[i+31:i] &lt; SRC2[31:0]
THEN DEST[i+31:i] := SRC1[i+31:i];
ELSE DEST[i+31:i] := SRC2[31:0];
FI;
ELSE
IF SRC1[i+31:i] &lt; SRC2[i+31:i]
THEN DEST[i+31:i] := SRC1[i+31:i];
ELSE DEST[i+31:i] := SRC2[i+31:i];
FI;
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i] := 0
FI
FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0
</pre>
<h3 id="vpminuq--evex-encoded-versions-">VPMINUQ (EVEX Encoded Versions)<a class="anchor" href="#vpminuq--evex-encoded-versions-">
</a></h3>
<pre>(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask* THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN
IF SRC1[i+63:i] &lt; SRC2[63:0]
THEN DEST[i+63:i] := SRC1[i+63:i];
ELSE DEST[i+63:i] := SRC2[63:0];
FI;
ELSE
IF SRC1[i+63:i] &lt; SRC2[i+63:i]
THEN DEST[i+63:i] := SRC1[i+63:i];
ELSE DEST[i+63:i] := SRC2[i+63:i];
FI;
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE
; zeroing-masking
DEST[i+63:i] := 0
FI
FI;
ENDFOR;
DEST[MAXVL-1:VL] := 0
</pre>
<h2 id="intel-c-c++-compiler-intrinsic-equivalent">Intel C/C++ Compiler Intrinsic Equivalent<a class="anchor" href="#intel-c-c++-compiler-intrinsic-equivalent">
</a></h2>
<pre>VPMINUD __m512i _mm512_min_epu32( __m512i a, __m512i b);
</pre>
<pre>VPMINUD __m512i _mm512_mask_min_epu32(__m512i s, __mmask16 k, __m512i a, __m512i b);
</pre>
<pre>VPMINUD __m512i _mm512_maskz_min_epu32( __mmask16 k, __m512i a, __m512i b);
</pre>
<pre>VPMINUQ __m512i _mm512_min_epu64( __m512i a, __m512i b);
</pre>
<pre>VPMINUQ __m512i _mm512_mask_min_epu64(__m512i s, __mmask8 k, __m512i a, __m512i b);
</pre>
<pre>VPMINUQ __m512i _mm512_maskz_min_epu64( __mmask8 k, __m512i a, __m512i b);
</pre>
<pre>VPMINUD __m256i _mm256_mask_min_epu32(__m256i s, __mmask16 k, __m256i a, __m256i b);
</pre>
<pre>VPMINUD __m256i _mm256_maskz_min_epu32( __mmask16 k, __m256i a, __m256i b);
</pre>
<pre>VPMINUQ __m256i _mm256_mask_min_epu64(__m256i s, __mmask8 k, __m256i a, __m256i b);
</pre>
<pre>VPMINUQ __m256i _mm256_maskz_min_epu64( __mmask8 k, __m256i a, __m256i b);
</pre>
<pre>VPMINUD __m128i _mm_mask_min_epu32(__m128i s, __mmask8 k, __m128i a, __m128i b);
</pre>
<pre>VPMINUD __m128i _mm_maskz_min_epu32( __mmask8 k, __m128i a, __m128i b);
</pre>
<pre>VPMINUQ __m128i _mm_mask_min_epu64(__m128i s, __mmask8 k, __m128i a, __m128i b);
</pre>
<pre>VPMINUQ __m128i _mm_maskz_min_epu64( __mmask8 k, __m128i a, __m128i b);
</pre>
<pre>(V)PMINUD __m128i _mm_min_epu32 ( __m128i a, __m128i b);
</pre>
<pre>VPMINUD __m256i _mm256_min_epu32 ( __m256i a, __m256i b);
</pre>
<h2 class="exceptions" id="simd-floating-point-exceptions">SIMD Floating-Point Exceptions<a class="anchor" href="#simd-floating-point-exceptions">
</a></h2>
<p>None.</p>
<h2 class="exceptions" id="other-exceptions">Other Exceptions<a class="anchor" href="#other-exceptions">
</a></h2>
<p>Non-EVEX-encoded instruction, see <span class="not-imported">Table 2-21</span>, “Type 4 Class Exception Conditions.”</p>
<p>EVEX-encoded instruction, see <span class="not-imported">Table 2-49</span>, “Type E4 Class Exception Conditions.”</p><footer><p>
This UNOFFICIAL, mechanically-separated, non-verified reference is provided for convenience, but it may be
inc<span style="opacity: 0.2">omp</span>lete or b<sub>r</sub>oke<sub>n</sub> in various obvious or non-obvious
ways. Refer to <a href="https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4">Intel® 64 and IA-32 Architectures Software Developers Manual</a> for anything serious.
</p></footer></body></html>