ia32-64/x86/xorps.html
2025-07-08 02:23:29 -03:00

178 lines
8.3 KiB
HTML
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xmlns:x86="http://www.felixcloutier.com/x86"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><link rel="stylesheet" type="text/css" href="style.css"></link><title>XORPS
— Bitwise Logical XOR of Packed Single Precision Floating-Point Values</title></head><body><header><nav><ul><li><a href='index.html'>Index</a></li><li>December 2023</li></ul></nav></header><h1>XORPS
— Bitwise Logical XOR of Packed Single Precision Floating-Point Values</h1>
<table>
<tr>
<th>Opcode/Instruction</th>
<th>Op / En</th>
<th>64/32 bit Mode Support</th>
<th>CPUID Feature Flag</th>
<th>Description</th></tr>
<tr>
<td>NP 0F 57 /r XORPS xmm1, xmm2/m128</td>
<td>A</td>
<td>V/V</td>
<td>SSE</td>
<td>Return the bitwise logical XOR of packed single-precision floating-point values in xmm1 and xmm2/mem.</td></tr>
<tr>
<td>VEX.128.0F.WIG 57 /r VXORPS xmm1,xmm2, xmm3/m128</td>
<td>B</td>
<td>V/V</td>
<td>AVX</td>
<td>Return the bitwise logical XOR of packed single-precision floating-point values in xmm2 and xmm3/mem.</td></tr>
<tr>
<td>VEX.256.0F.WIG 57 /r VXORPS ymm1, ymm2, ymm3/m256</td>
<td>B</td>
<td>V/V</td>
<td>AVX</td>
<td>Return the bitwise logical XOR of packed single-precision floating-point values in ymm2 and ymm3/mem.</td></tr>
<tr>
<td>EVEX.128.0F.W0 57 /r VXORPS xmm1 {k1}{z}, xmm2, xmm3/m128/m32bcst</td>
<td>C</td>
<td>V/V</td>
<td>AVX512VL AVX512DQ</td>
<td>Return the bitwise logical XOR of packed single-precision floating-point values in xmm2 and xmm3/m128/m32bcst subject to writemask k1.</td></tr>
<tr>
<td>EVEX.256.0F.W0 57 /r VXORPS ymm1 {k1}{z}, ymm2, ymm3/m256/m32bcst</td>
<td>C</td>
<td>V/V</td>
<td>AVX512VL AVX512DQ</td>
<td>Return the bitwise logical XOR of packed single-precision floating-point values in ymm2 and ymm3/m256/m32bcst subject to writemask k1.</td></tr>
<tr>
<td>EVEX.512.0F.W0 57 /r VXORPS zmm1 {k1}{z}, zmm2, zmm3/m512/m32bcst</td>
<td>C</td>
<td>V/V</td>
<td>AVX512DQ</td>
<td>Return the bitwise logical XOR of packed single-precision floating-point values in zmm2 and zmm3/m512/m32bcst subject to writemask k1.</td></tr></table>
<h2 id="instruction-operand-encoding">Instruction Operand Encoding<a class="anchor" href="#instruction-operand-encoding">
</a></h2>
<table>
<tr>
<th>Op/En</th>
<th>Tuple Type</th>
<th>Operand 1</th>
<th>Operand 2</th>
<th>Operand 3</th>
<th>Operand 4</th></tr>
<tr>
<td>A</td>
<td>N/A</td>
<td>ModRM:reg (r, w)</td>
<td>ModRM:r/m (r)</td>
<td>N/A</td>
<td>N/A</td></tr>
<tr>
<td>B</td>
<td>N/A</td>
<td>ModRM:reg (w)</td>
<td>VEX.vvvv (r)</td>
<td>ModRM:r/m (r)</td>
<td>N/A</td></tr>
<tr>
<td>C</td>
<td>Full</td>
<td>ModRM:reg (w)</td>
<td>EVEX.vvvv (r)</td>
<td>ModRM:r/m (r)</td>
<td>N/A</td></tr></table>
<h3 id="description">Description<a class="anchor" href="#description">
</a></h3>
<p>Performs a bitwise logical XOR of the four, eight or sixteen packed single-precision floating-point values from the first source operand and the second source operand, and stores the result in the destination operand</p>
<p>EVEX.512 encoded version: The first source operand is a ZMM register. The second source operand can be a ZMM register or a vector memory location. The destination operand is a ZMM register conditionally updated with write-mask k1.</p>
<p>VEX.256 and EVEX.256 encoded versions: The first source operand is a YMM register. The second source operand is a YMM register or a 256-bit memory location. The destination operand is a YMM register (conditionally updated with writemask k1 in case of EVEX). The upper bits (MAXVL-1:256) of the corresponding ZMM register destination are zeroed.</p>
<p>VEX.128 and EVEX.128 encoded versions: The first source operand is an XMM register. The second source operand is an XMM register or 128-bit memory location. The destination operand is an XMM register (conditionally updated with writemask k1 in case of EVEX). The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are zeroed.</p>
<p>128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding register destination are unmodified.</p>
<h3 id="operation">Operation<a class="anchor" href="#operation">
</a></h3>
<h4 id="vxorps--evex-encoded-versions-">VXORPS (EVEX Encoded Versions)<a class="anchor" href="#vxorps--evex-encoded-versions-">
</a></h4>
<pre>(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask* THEN
IF (EVEX.b == 1) AND (SRC2 *is memory*)
THEN DEST[i+31:i] := SRC1[i+31:i] BITWISE XOR SRC2[31:0];
ELSE DEST[i+31:i] := SRC1[i+31:i] BITWISE XOR SRC2[i+31:i];
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking*
; zeroing-masking
DEST[i+31:i] = 0
FI
FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
</pre>
<h4 id="vxorps--vex-256-encoded-version-">VXORPS (VEX.256 Encoded Version)<a class="anchor" href="#vxorps--vex-256-encoded-version-">
</a></h4>
<pre>DEST[31:0] := SRC1[31:0] BITWISE XOR SRC2[31:0]
DEST[63:32] := SRC1[63:32] BITWISE XOR SRC2[63:32]
DEST[95:64] := SRC1[95:64] BITWISE XOR SRC2[95:64]
DEST[127:96] := SRC1[127:96] BITWISE XOR SRC2[127:96]
DEST[159:128] := SRC1[159:128] BITWISE XOR SRC2[159:128]
DEST[191:160] := SRC1[191:160] BITWISE XOR SRC2[191:160]
DEST[223:192] := SRC1[223:192] BITWISE XOR SRC2[223:192]
DEST[255:224] := SRC1[255:224] BITWISE XOR SRC2[255:224].
DEST[MAXVL-1:256] := 0
</pre>
<h4 id="vxorps--vex-128-encoded-version-">VXORPS (VEX.128 Encoded Version)<a class="anchor" href="#vxorps--vex-128-encoded-version-">
</a></h4>
<pre>DEST[31:0] := SRC1[31:0] BITWISE XOR SRC2[31:0]
DEST[63:32] := SRC1[63:32] BITWISE XOR SRC2[63:32]
DEST[95:64] := SRC1[95:64] BITWISE XOR SRC2[95:64]
DEST[127:96] := SRC1[127:96] BITWISE XOR SRC2[127:96]
DEST[MAXVL-1:128] := 0
</pre>
<h4 id="xorps--128-bit-legacy-sse-version-">XORPS (128-bit Legacy SSE Version)<a class="anchor" href="#xorps--128-bit-legacy-sse-version-">
</a></h4>
<pre>DEST[31:0] := SRC1[31:0] BITWISE XOR SRC2[31:0]
DEST[63:32] := SRC1[63:32] BITWISE XOR SRC2[63:32]
DEST[95:64] := SRC1[95:64] BITWISE XOR SRC2[95:64]
DEST[127:96] := SRC1[127:96] BITWISE XOR SRC2[127:96]
DEST[MAXVL-1:128] (Unmodified)
</pre>
<h3 id="intel-c-c++-compiler-intrinsic-equivalent">Intel C/C++ Compiler Intrinsic Equivalent<a class="anchor" href="#intel-c-c++-compiler-intrinsic-equivalent">
</a></h3>
<pre>VXORPS __m512 _mm512_xor_ps (__m512 a, __m512 b);
</pre>
<pre>VXORPS __m512 _mm512_mask_xor_ps (__m512 a, __mmask16 m, __m512 b);
</pre>
<pre>VXORPS __m512 _mm512_maskz_xor_ps (__mmask16 m, __m512 a);
</pre>
<pre>VXORPS __m256 _mm256_xor_ps (__m256 a, __m256 b);
</pre>
<pre>VXORPS __m256 _mm256_mask_xor_ps (__m256 a, __mmask8 m, __m256 b);
</pre>
<pre>VXORPS __m256 _mm256_maskz_xor_ps (__mmask8 m, __m256 a);
</pre>
<pre>XORPS __m128 _mm_xor_ps (__m128 a, __m128 b);
</pre>
<pre>VXORPS __m128 _mm_mask_xor_ps (__m128 a, __mmask8 m, __m128 b);
</pre>
<pre>VXORPS __m128 _mm_maskz_xor_ps (__mmask8 m, __m128 a);
</pre>
<h3 class="exceptions" id="simd-floating-point-exceptions">SIMD Floating-Point Exceptions<a class="anchor" href="#simd-floating-point-exceptions">
</a></h3>
<p>None.</p>
<h3 class="exceptions" id="other-exceptions">Other Exceptions<a class="anchor" href="#other-exceptions">
</a></h3>
<p>Non-EVEX-encoded instructions, see <span class="not-imported">Table 2-21</span>, “Type 4 Class Exception Conditions.”</p>
<p>EVEX-encoded instructions, see <span class="not-imported">Table 2-49</span>, “Type E4 Class Exception Conditions.”</p><footer><p>
This UNOFFICIAL, mechanically-separated, non-verified reference is provided for convenience, but it may be
inc<span style="opacity: 0.2">omp</span>lete or b<sub>r</sub>oke<sub>n</sub> in various obvious or non-obvious
ways. Refer to <a href="https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4">Intel® 64 and IA-32 Architectures Software Developers Manual</a> for anything serious.
</p></footer></body></html>