ia32-64/x86/pmulhrsw.html

250 lines
12 KiB
HTML
Raw Normal View History

2025-07-08 02:23:29 -03:00
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xmlns:x86="http://www.felixcloutier.com/x86"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><link rel="stylesheet" type="text/css" href="style.css"></link><title>PMULHRSW
— Packed Multiply High With Round and Scale</title></head><body><header><nav><ul><li><a href='index.html'>Index</a></li><li>December 2023</li></ul></nav></header><h1>PMULHRSW
— Packed Multiply High With Round and Scale</h1>
<table>
<tr>
<th>Opcode/Instruction</th>
<th>Op/En</th>
<th>64/32 bit Mode Support</th>
<th>CPUID Feature Flag</th>
<th>Description</th></tr>
<tr>
<td>NP 0F 38 0B /r<sup>1</sup> PMULHRSW mm1, mm2/m64</td>
<td>A</td>
<td>V/V</td>
<td>SSSE3</td>
<td>Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to mm1.</td></tr>
<tr>
<td>66 0F 38 0B /r PMULHRSW xmm1, xmm2/m128</td>
<td>A</td>
<td>V/V</td>
<td>SSSE3</td>
<td>Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to xmm1.</td></tr>
<tr>
<td>VEX.128.66.0F38.WIG 0B /r VPMULHRSW xmm1, xmm2, xmm3/m128</td>
<td>B</td>
<td>V/V</td>
<td>AVX</td>
<td>Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to xmm1.</td></tr>
<tr>
<td>VEX.256.66.0F38.WIG 0B /r VPMULHRSW ymm1, ymm2, ymm3/m256</td>
<td>B</td>
<td>V/V</td>
<td>AVX2</td>
<td>Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to ymm1.</td></tr>
<tr>
<td>EVEX.128.66.0F38.WIG 0B /r VPMULHRSW xmm1 {k1}{z}, xmm2, xmm3/m128</td>
<td>C</td>
<td>V/V</td>
<td>AVX512VL AVX512BW</td>
<td>Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to xmm1 under writemask k1.</td></tr>
<tr>
<td>EVEX.256.66.0F38.WIG 0B /r VPMULHRSW ymm1 {k1}{z}, ymm2, ymm3/m256</td>
<td>C</td>
<td>V/V</td>
<td>AVX512VL AVX512BW</td>
<td>Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to ymm1 under writemask k1.</td></tr>
<tr>
<td>EVEX.512.66.0F38.WIG 0B /r VPMULHRSW zmm1 {k1}{z}, zmm2, zmm3/m512</td>
<td>C</td>
<td>V/V</td>
<td>AVX512BW</td>
<td>Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to zmm1 under writemask k1.</td></tr></table>
<blockquote>
<p>1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Classification,” in the Intel<sup>®</sup> 64 and IA-32 Architectures Software Developers Manual, Volume 2A, and Section 23.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers,” in the Intel<sup>®</sup> 64 and IA-32 Architectures Software Developers Manual, Volume 3B.</p></blockquote>
<h2 id="instruction-operand-encoding">Instruction Operand Encoding<a class="anchor" href="#instruction-operand-encoding">
</a></h2>
<table>
<tr>
<th>Op/En</th>
<th>Tuple Type</th>
<th>Operand 1</th>
<th>Operand 2</th>
<th>Operand 3</th>
<th>Operand 4</th></tr>
<tr>
<td>A</td>
<td>N/A</td>
<td>ModRM:reg (r, w)</td>
<td>ModRM:r/m (r)</td>
<td>N/A</td>
<td>N/A</td></tr>
<tr>
<td>B</td>
<td>N/A</td>
<td>ModRM:reg (w)</td>
<td>VEX.vvvv (r)</td>
<td>ModRM:r/m (r)</td>
<td>N/A</td></tr>
<tr>
<td>C</td>
<td>Full Mem</td>
<td>ModRM:reg (w)</td>
<td>EVEX.vvvv (r)</td>
<td>ModRM:r/m (r)</td>
<td>N/A</td></tr></table>
<h2 id="description">Description<a class="anchor" href="#description">
</a></h2>
<p>PMULHRSW multiplies vertically each signed 16-bit integer from the destination operand (first operand) with the corresponding signed 16-bit integer of the source operand (second operand), producing intermediate, signed 32-bit integers. Each intermediate 32-bit integer is truncated to the 18 most significant bits. Rounding is always performed by adding 1 to the least significant bit of the 18-bit intermediate result. The final result is obtained by selecting the 16 bits immediately to the right of the most significant bit of each 18-bit intermediate result and packed to the destination operand.</p>
<p>When the source operand is a 128-bit memory operand, the operand must be aligned on a 16-byte boundary or a general-protection exception (#GP) will be generated.</p>
<p>In 64-bit mode and not encoded with VEX/EVEX, use the REX prefix to access XMM8-XMM15 registers.</p>
<p>Legacy SSE version 64-bit operand: Both operands can be MMX registers. The second source operand is an MMX register or a 64-bit memory location.</p>
<p>128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding YMM destination register remain unchanged.</p>
<p>VEX.128 encoded version: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the destination YMM register are zeroed.</p>
<p>VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The first source and destination operands are YMM registers.</p>
<p>EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1.</p>
<h2 id="operation">Operation<a class="anchor" href="#operation">
</a></h2>
<h3 id="pmulhrsw--with-64-bit-operands-">PMULHRSW (With 64-bit Operands)<a class="anchor" href="#pmulhrsw--with-64-bit-operands-">
</a></h3>
<pre>temp0[31:0] = INT32 ((DEST[15:0] * SRC[15:0]) &gt;&gt;14) + 1;
temp1[31:0] = INT32 ((DEST[31:16] * SRC[31:16]) &gt;&gt;14) + 1;
temp2[31:0] = INT32 ((DEST[47:32] * SRC[47:32]) &gt;&gt; 14) + 1;
temp3[31:0] = INT32 ((DEST[63:48] * SRc[63:48]) &gt;&gt; 14) + 1;
DEST[15:0] = temp0[16:1];
DEST[31:16] = temp1[16:1];
DEST[47:32] = temp2[16:1];
DEST[63:48] = temp3[16:1];
</pre>
<h3 id="pmulhrsw--with-128-bit-operands-">PMULHRSW (With 128-bit Operands)<a class="anchor" href="#pmulhrsw--with-128-bit-operands-">
</a></h3>
<pre>temp0[31:0] = INT32 ((DEST[15:0] * SRC[15:0]) &gt;&gt;14) + 1;
temp1[31:0] = INT32 ((DEST[31:16] * SRC[31:16]) &gt;&gt;14) + 1;
temp2[31:0] = INT32 ((DEST[47:32] * SRC[47:32]) &gt;&gt;14) + 1;
temp3[31:0] = INT32 ((DEST[63:48] * SRC[63:48]) &gt;&gt;14) + 1;
temp4[31:0] = INT32 ((DEST[79:64] * SRC[79:64]) &gt;&gt;14) + 1;
temp5[31:0] = INT32 ((DEST[95:80] * SRC[95:80]) &gt;&gt;14) + 1;
temp6[31:0] = INT32 ((DEST[111:96] * SRC[111:96]) &gt;&gt;14) + 1;
temp7[31:0] = INT32 ((DEST[127:112] * SRC[127:112) &gt;&gt;14) + 1;
DEST[15:0] = temp0[16:1];
DEST[31:16] = temp1[16:1];
DEST[47:32] = temp2[16:1];
DEST[63:48] = temp3[16:1];
DEST[79:64] = temp4[16:1];
DEST[95:80] = temp5[16:1];
DEST[111:96] = temp6[16:1];
DEST[127:112] = temp7[16:1];
</pre>
<h3 id="vpmulhrsw--vex-128-encoded-version-">VPMULHRSW (VEX.128 Encoded Version)<a class="anchor" href="#vpmulhrsw--vex-128-encoded-version-">
</a></h3>
<pre>temp0[31:0] := INT32 ((SRC1[15:0] * SRC2[15:0]) &gt;&gt;14) + 1
temp1[31:0] := INT32 ((SRC1[31:16] * SRC2[31:16]) &gt;&gt;14) + 1
temp2[31:0] := INT32 ((SRC1[47:32] * SRC2[47:32]) &gt;&gt;14) + 1
temp3[31:0] := INT32 ((SRC1[63:48] * SRC2[63:48]) &gt;&gt;14) + 1
temp4[31:0] := INT32 ((SRC1[79:64] * SRC2[79:64]) &gt;&gt;14) + 1
temp5[31:0] := INT32 ((SRC1[95:80] * SRC2[95:80]) &gt;&gt;14) + 1
temp6[31:0] := INT32 ((SRC1[111:96] * SRC2[111:96]) &gt;&gt;14) + 1
temp7[31:0] := INT32 ((SRC1[127:112] * SRC2[127:112) &gt;&gt;14) + 1
DEST[15:0] := temp0[16:1]
DEST[31:16] := temp1[16:1]
DEST[47:32] := temp2[16:1]
DEST[63:48] := temp3[16:1]
DEST[79:64] := temp4[16:1]
DEST[95:80] := temp5[16:1]
DEST[111:96] := temp6[16:1]
DEST[127:112] := temp7[16:1]
DEST[MAXVL-1:128] := 0
</pre>
<h3 id="vpmulhrsw--vex-256-encoded-version-">VPMULHRSW (VEX.256 Encoded Version)<a class="anchor" href="#vpmulhrsw--vex-256-encoded-version-">
</a></h3>
<pre>temp0[31:0] := INT32 ((SRC1[15:0] * SRC2[15:0]) &gt;&gt;14) + 1
temp1[31:0] := INT32 ((SRC1[31:16] * SRC2[31:16]) &gt;&gt;14) + 1
temp2[31:0] := INT32 ((SRC1[47:32] * SRC2[47:32]) &gt;&gt;14) + 1
temp3[31:0] := INT32 ((SRC1[63:48] * SRC2[63:48]) &gt;&gt;14) + 1
temp4[31:0] := INT32 ((SRC1[79:64] * SRC2[79:64]) &gt;&gt;14) + 1
temp5[31:0] := INT32 ((SRC1[95:80] * SRC2[95:80]) &gt;&gt;14) + 1
temp6[31:0] := INT32 ((SRC1[111:96] * SRC2[111:96]) &gt;&gt;14) + 1
temp7[31:0] := INT32 ((SRC1[127:112] * SRC2[127:112) &gt;&gt;14) + 1
temp8[31:0] := INT32 ((SRC1[143:128] * SRC2[143:128]) &gt;&gt;14) + 1
temp9[31:0] := INT32 ((SRC1[159:144] * SRC2[159:144]) &gt;&gt;14) + 1
temp10[31:0] := INT32 ((SRC1[75:160] * SRC2[175:160]) &gt;&gt;14) + 1
temp11[31:0] := INT32 ((SRC1[191:176] * SRC2[191:176]) &gt;&gt;14) + 1
temp12[31:0] := INT32 ((SRC1[207:192] * SRC2[207:192]) &gt;&gt;14) + 1
temp13[31:0] := INT32 ((SRC1[223:208] * SRC2[223:208]) &gt;&gt;14) + 1
temp14[31:0] := INT32 ((SRC1[239:224] * SRC2[239:224]) &gt;&gt;14) + 1
temp15[31:0] := INT32 ((SRC1[255:240] * SRC2[255:240) &gt;&gt;14) + 1
DEST[15:0] := temp0[16:1]
DEST[31:16] := temp1[16:1]
DEST[47:32] := temp2[16:1]
DEST[63:48] := temp3[16:1]
DEST[79:64] := temp4[16:1]
DEST[95:80] := temp5[16:1]
DEST[111:96] := temp6[16:1]
DEST[127:112] := temp7[16:1]
DEST[143:128] := temp8[16:1]
DEST[159:144] := temp9[16:1]
DEST[175:160] := temp10[16:1]
DEST[191:176] := temp11[16:1]
DEST[207:192] := temp12[16:1]
DEST[223:208] := temp13[16:1]
DEST[239:224] := temp14[16:1]
DEST[255:240] := temp15[16:1]
DEST[MAXVL-1:256] := 0
</pre>
<h3 id="vpmulhrsw--evex-encoded-version-">VPMULHRSW (EVEX Encoded Version)<a class="anchor" href="#vpmulhrsw--evex-encoded-version-">
</a></h3>
<pre>(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO KL-1
i := j * 16
IF k1[j] OR *no writemask*
THEN
temp[31:0] := ((SRC1[i+15:i] * SRC2[i+15:i]) &gt;&gt;14) + 1
DEST[i+15:i] := tmp[16:1]
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE *zeroing-masking*
; zeroing-masking
DEST[i+15:i] := 0
FI
FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
</pre>
<h2 id="intel-c-c++-compiler-intrinsic-equivalents">Intel C/C++ Compiler Intrinsic Equivalents<a class="anchor" href="#intel-c-c++-compiler-intrinsic-equivalents">
</a></h2>
<pre>VPMULHRSW __m512i _mm512_mulhrs_epi16(__m512i a, __m512i b);
</pre>
<pre>VPMULHRSW __m512i _mm512_mask_mulhrs_epi16(__m512i s, __mmask32 k, __m512i a, __m512i b);
</pre>
<pre>VPMULHRSW __m512i _mm512_maskz_mulhrs_epi16( __mmask32 k, __m512i a, __m512i b);
</pre>
<pre>VPMULHRSW __m256i _mm256_mask_mulhrs_epi16(__m256i s, __mmask16 k, __m256i a, __m256i b);
</pre>
<pre>VPMULHRSW __m256i _mm256_maskz_mulhrs_epi16( __mmask16 k, __m256i a, __m256i b);
</pre>
<pre>VPMULHRSW __m128i _mm_mask_mulhrs_epi16(__m128i s, __mmask8 k, __m128i a, __m128i b);
</pre>
<pre>VPMULHRSW __m128i _mm_maskz_mulhrs_epi16( __mmask8 k, __m128i a, __m128i b);
</pre>
<pre>PMULHRSW __m64 _mm_mulhrs_pi16 (__m64 a, __m64 b)
</pre>
<pre>(V)PMULHRSW __m128i _mm_mulhrs_epi16 (__m128i a, __m128i b)
</pre>
<pre>VPMULHRSW __m256i _mm256_mulhrs_epi16 (__m256i a, __m256i b)
</pre>
<h2 class="exceptions" id="simd-floating-point-exceptions">SIMD Floating-Point Exceptions<a class="anchor" href="#simd-floating-point-exceptions">
</a></h2>
<p>None.</p>
<h2 class="exceptions" id="other-exceptions">Other Exceptions<a class="anchor" href="#other-exceptions">
</a></h2>
<p>Non-EVEX-encoded instruction, see <span class="not-imported">Table 2-21</span>, “Type 4 Class Exception Conditions.”</p>
<p>EVEX-encoded instruction, see Exceptions Type E4.nb in <span class="not-imported">Table 2-49</span>, “Type E4 Class Exception Conditions.”</p><footer><p>
This UNOFFICIAL, mechanically-separated, non-verified reference is provided for convenience, but it may be
inc<span style="opacity: 0.2">omp</span>lete or b<sub>r</sub>oke<sub>n</sub> in various obvious or non-obvious
ways. Refer to <a href="https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4">Intel® 64 and IA-32 Architectures Software Developers Manual</a> for anything serious.
</p></footer></body></html>