ia32-64/x86/vpmovqd.vpmovsqd.vpmovusqd.html

285 lines
12 KiB
HTML
Raw Permalink Normal View History

2025-07-08 02:23:29 -03:00
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xmlns:x86="http://www.felixcloutier.com/x86"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><link rel="stylesheet" type="text/css" href="style.css"></link><title>VPMOVQD/VPMOVSQD/VPMOVUSQD
— Down Convert QWord to DWord</title></head><body><header><nav><ul><li><a href='index.html'>Index</a></li><li>December 2023</li></ul></nav></header><h1>VPMOVQD/VPMOVSQD/VPMOVUSQD
— Down Convert QWord to DWord</h1>
<table>
<tr>
<th>Opcode/Instruction</th>
<th>Op/En</th>
<th>64/32 bit Mode Support</th>
<th>CPUID Feature Flag</th>
<th>Description</th></tr>
<tr>
<td>EVEX.128.F3.0F38.W0 35 /r VPMOVQD xmm1/m128 {k1}{z}, xmm2</td>
<td>A</td>
<td>V/V</td>
<td>AVX512VL AVX512F</td>
<td>Converts 2 packed quad-word integers from xmm2 into 2 packed double-word integers in xmm1/m128 with truncation subject to writemask k1.</td></tr>
<tr>
<td>EVEX.128.F3.0F38.W0 25 /r VPMOVSQD xmm1/m64 {k1}{z}, xmm2</td>
<td>A</td>
<td>V/V</td>
<td>AVX512VL AVX512F</td>
<td>Converts 2 packed signed quad-word integers from xmm2 into 2 packed signed double-word integers in xmm1/m64 using signed saturation subject to writemask k1.</td></tr>
<tr>
<td>EVEX.128.F3.0F38.W0 15 /r VPMOVUSQD xmm1/m64 {k1}{z}, xmm2</td>
<td>A</td>
<td>V/V</td>
<td>AVX512VL AVX512F</td>
<td>Converts 2 packed unsigned quad-word integers from xmm2 into 2 packed unsigned double-word integers in xmm1/m64 using unsigned saturation subject to writemask k1.</td></tr>
<tr>
<td>EVEX.256.F3.0F38.W0 35 /r VPMOVQD xmm1/m128 {k1}{z}, ymm2</td>
<td>A</td>
<td>V/V</td>
<td>AVX512VL AVX512F</td>
<td>Converts 4 packed quad-word integers from ymm2 into 4 packed double-word integers in xmm1/m128 with truncation subject to writemask k1.</td></tr>
<tr>
<td>EVEX.256.F3.0F38.W0 25 /r VPMOVSQD xmm1/m128 {k1}{z}, ymm2</td>
<td>A</td>
<td>V/V</td>
<td>AVX512VL AVX512F</td>
<td>Converts 4 packed signed quad-word integers from ymm2 into 4 packed signed double-word integers in xmm1/m128 using signed saturation subject to writemask k1.</td></tr>
<tr>
<td>EVEX.256.F3.0F38.W0 15 /r VPMOVUSQD xmm1/m128 {k1}{z}, ymm2</td>
<td>A</td>
<td>V/V</td>
<td>AVX512VL AVX512F</td>
<td>Converts 4 packed unsigned quad-word integers from ymm2 into 4 packed unsigned double-word integers in xmm1/m128 using unsigned saturation subject to writemask k1.</td></tr>
<tr>
<td>EVEX.512.F3.0F38.W0 35 /r VPMOVQD ymm1/m256 {k1}{z}, zmm2</td>
<td>A</td>
<td>V/V</td>
<td>AVX512F</td>
<td>Converts 8 packed quad-word integers from zmm2 into 8 packed double-word integers in ymm1/m256 with truncation subject to writemask k1.</td></tr>
<tr>
<td>EVEX.512.F3.0F38.W0 25 /r VPMOVSQD ymm1/m256 {k1}{z}, zmm2</td>
<td>A</td>
<td>V/V</td>
<td>AVX512F</td>
<td>Converts 8 packed signed quad-word integers from zmm2 into 8 packed signed double-word integers in ymm1/m256 using signed saturation subject to writemask k1.</td></tr>
<tr>
<td>EVEX.512.F3.0F38.W0 15 /r VPMOVUSQD ymm1/m256 {k1}{z}, zmm2</td>
<td>A</td>
<td>V/V</td>
<td>AVX512F</td>
<td>Converts 8 packed unsigned quad-word integers from zmm2 into 8 packed unsigned double-word integers in ymm1/m256 using unsigned saturation subject to writemask k1.</td></tr></table>
<h2 id="instruction-operand-encoding">Instruction Operand Encoding<a class="anchor" href="#instruction-operand-encoding">
</a></h2>
<table>
<tr>
<th>Op/En</th>
<th>Tuple Type</th>
<th>Operand 1</th>
<th>Operand 2</th>
<th>Operand 3</th>
<th>Operand 4</th></tr>
<tr>
<td>A</td>
<td>Half Mem</td>
<td>ModRM:r/m (w)</td>
<td>ModRM:reg (r)</td>
<td>N/A</td>
<td>N/A</td></tr></table>
<h3 id="description">Description<a class="anchor" href="#description">
</a></h3>
<p>VPMOVQW down converts 64-bit integer elements in the source operand (the second operand) into packed double-words using truncation. VPMOVSQW converts signed 64-bit integers into packed signed doublewords using signed saturation. VPMOVUSQW convert unsigned quad-word values into unsigned double-word values using unsigned saturation.</p>
<p>The source operand is a ZMM/YMM/XMM register. The destination operand is a YMM/XMM/XMM register or a 256/128/64-bit memory location.</p>
<p>Down-converted doubleword elements are written to the destination operand (the first operand) from the least-significant doubleword. Doubleword elements of the destination operand are updated according to the writemask. Bits (MAXVL-1:256/128/64) of the register destination are zeroed.</p>
<p>EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.</p>
<h3 id="operation">Operation<a class="anchor" href="#operation">
</a></h3>
<h4 id="vpmovqd-instruction--evex-encoded-version--reg-reg-form">VPMOVQD instruction (EVEX encoded version) reg-reg form<a class="anchor" href="#vpmovqd-instruction--evex-encoded-version--reg-reg-form">
</a></h4>
<pre>(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1
i := j * 32
m := j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] := TruncateQuadWordToDWord (SRC[m+63:m])
ELSE *zeroing-masking*
; zeroing-masking
DEST[i+31:i] := 0
FI
FI;
ENDFOR
DEST[MAXVL-1:VL/2] := 0;
</pre>
<h4 id="vpmovqd-instruction--evex-encoded-version--memory-form">VPMOVQD instruction (EVEX encoded version) memory form<a class="anchor" href="#vpmovqd-instruction--evex-encoded-version--memory-form">
</a></h4>
<pre>(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1
i := j * 32
m := j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] := TruncateQuadWordToDWord (SRC[m+63:m])
ELSE *DEST[i+31:i] remains unchanged* ; merging-masking
FI;
ENDFOR
</pre>
<h4 id="vpmovsqd-instruction--evex-encoded-version--reg-reg-form">VPMOVSQD instruction (EVEX encoded version) reg-reg form<a class="anchor" href="#vpmovsqd-instruction--evex-encoded-version--reg-reg-form">
</a></h4>
<pre>(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1
i := j * 32
m := j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] := SaturateSignedQuadWordToDWord (SRC[m+63:m])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking*
; zeroing-masking
DEST[i+31:i] := 0
FI
FI;
ENDFOR
DEST[MAXVL-1:VL/2] := 0;
</pre>
<h4 id="vpmovsqd-instruction--evex-encoded-version--memory-form">VPMOVSQD instruction (EVEX encoded version) memory form<a class="anchor" href="#vpmovsqd-instruction--evex-encoded-version--memory-form">
</a></h4>
<pre>(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1
i := j * 32
m := j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] := SaturateSignedQuadWordToDWord (SRC[m+63:m])
ELSE *DEST[i+31:i] remains unchanged* ; merging-masking
FI;
ENDFOR
</pre>
<h4 id="vpmovusqd-instruction--evex-encoded-version--reg-reg-form">VPMOVUSQD instruction (EVEX encoded version) reg-reg form<a class="anchor" href="#vpmovusqd-instruction--evex-encoded-version--reg-reg-form">
</a></h4>
<pre>(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1
i := j * 32
m := j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] := SaturateUnsignedQuadWordToDWord (SRC[m+63:m])
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE *zeroing-masking*
; zeroing-masking
DEST[i+31:i] := 0
FI
FI;
ENDFOR
DEST[MAXVL-1:VL/2] := 0;
</pre>
<h4 id="vpmovusqd-instruction--evex-encoded-version--memory-form">VPMOVUSQD instruction (EVEX encoded version) memory form<a class="anchor" href="#vpmovusqd-instruction--evex-encoded-version--memory-form">
</a></h4>
<pre>(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1
i := j * 32
m := j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] := SaturateUnsignedQuadWordToDWord (SRC[m+63:m])
ELSE *DEST[i+31:i] remains unchanged* ; merging-masking
FI;
ENDFOR
</pre>
<h3 id="intel-c-c++-compiler-intrinsic-equivalents">Intel C/C++ Compiler Intrinsic Equivalents<a class="anchor" href="#intel-c-c++-compiler-intrinsic-equivalents">
</a></h3>
<pre>VPMOVQD __m256i _mm512_cvtepi64_epi32( __m512i a);
</pre>
<pre>VPMOVQD __m256i _mm512_mask_cvtepi64_epi32(__m256i s, __mmask8 k, __m512i a);
</pre>
<pre>VPMOVQD __m256i _mm512_maskz_cvtepi64_epi32( __mmask8 k, __m512i a);
</pre>
<pre>VPMOVQD void _mm512_mask_cvtepi64_storeu_epi32(void * d, __mmask8 k, __m512i a);
</pre>
<pre>VPMOVSQD __m256i _mm512_cvtsepi64_epi32( __m512i a);
</pre>
<pre>VPMOVSQD __m256i _mm512_mask_cvtsepi64_epi32(__m256i s, __mmask8 k, __m512i a);
</pre>
<pre>VPMOVSQD __m256i _mm512_maskz_cvtsepi64_epi32( __mmask8 k, __m512i a);
</pre>
<pre>VPMOVSQD void _mm512_mask_cvtsepi64_storeu_epi32(void * d, __mmask8 k, __m512i a);
</pre>
<pre>VPMOVUSQD __m256i _mm512_cvtusepi64_epi32( __m512i a);
</pre>
<pre>VPMOVUSQD __m256i _mm512_mask_cvtusepi64_epi32(__m256i s, __mmask8 k, __m512i a);
</pre>
<pre>VPMOVUSQD __m256i _mm512_maskz_cvtusepi64_epi32( __mmask8 k, __m512i a);
</pre>
<pre>VPMOVUSQD void _mm512_mask_cvtusepi64_storeu_epi32(void * d, __mmask8 k, __m512i a);
</pre>
<pre>VPMOVUSQD __m128i _mm256_cvtusepi64_epi32(__m256i a);
</pre>
<pre>VPMOVUSQD __m128i _mm256_mask_cvtusepi64_epi32(__m128i a, __mmask8 k, __m256i b);
</pre>
<pre>VPMOVUSQD __m128i _mm256_maskz_cvtusepi64_epi32( __mmask8 k, __m256i b);
</pre>
<pre>VPMOVUSQD void _mm256_mask_cvtusepi64_storeu_epi32(void * , __mmask8 k, __m256i b);
</pre>
<pre>VPMOVUSQD __m128i _mm_cvtusepi64_epi32(__m128i a);
</pre>
<pre>VPMOVUSQD __m128i _mm_mask_cvtusepi64_epi32(__m128i a, __mmask8 k, __m128i b);
</pre>
<pre>VPMOVUSQD __m128i _mm_maskz_cvtusepi64_epi32( __mmask8 k, __m128i b);
</pre>
<pre>VPMOVUSQD void _mm_mask_cvtusepi64_storeu_epi32(void * , __mmask8 k, __m128i b);
</pre>
<pre>VPMOVSQD __m128i _mm256_cvtsepi64_epi32(__m256i a);
</pre>
<pre>VPMOVSQD __m128i _mm256_mask_cvtsepi64_epi32(__m128i a, __mmask8 k, __m256i b);
</pre>
<pre>VPMOVSQD __m128i _mm256_maskz_cvtsepi64_epi32( __mmask8 k, __m256i b);
</pre>
<pre>VPMOVSQD void _mm256_mask_cvtsepi64_storeu_epi32(void * , __mmask8 k, __m256i b);
</pre>
<pre>VPMOVSQD __m128i _mm_cvtsepi64_epi32(__m128i a);
</pre>
<pre>VPMOVSQD __m128i _mm_mask_cvtsepi64_epi32(__m128i a, __mmask8 k, __m128i b);
</pre>
<pre>VPMOVSQD __m128i _mm_maskz_cvtsepi64_epi32( __mmask8 k, __m128i b);
</pre>
<pre>VPMOVSQD void _mm_mask_cvtsepi64_storeu_epi32(void * , __mmask8 k, __m128i b);
</pre>
<pre>VPMOVQD __m128i _mm256_cvtepi64_epi32(__m256i a);
</pre>
<pre>VPMOVQD __m128i _mm256_mask_cvtepi64_epi32(__m128i a, __mmask8 k, __m256i b);
</pre>
<pre>VPMOVQD __m128i _mm256_maskz_cvtepi64_epi32( __mmask8 k, __m256i b);
</pre>
<pre>VPMOVQD void _mm256_mask_cvtepi64_storeu_epi32(void * , __mmask8 k, __m256i b);
</pre>
<pre>VPMOVQD __m128i _mm_cvtepi64_epi32(__m128i a);
</pre>
<pre>VPMOVQD __m128i _mm_mask_cvtepi64_epi32(__m128i a, __mmask8 k, __m128i b);
</pre>
<pre>VPMOVQD __m128i _mm_maskz_cvtepi64_epi32( __mmask8 k, __m128i b);
</pre>
<pre>VPMOVQD void _mm_mask_cvtepi64_storeu_epi32(void * , __mmask8 k, __m128i b);
</pre>
<h3 class="exceptions" id="simd-floating-point-exceptions">SIMD Floating-Point Exceptions<a class="anchor" href="#simd-floating-point-exceptions">
</a></h3>
<p>None.</p>
<h3 class="exceptions" id="other-exceptions">Other Exceptions<a class="anchor" href="#other-exceptions">
</a></h3>
<p>EVEX-encoded instruction, see <span class="not-imported">Table 2-53</span>, “Type E6 Class Exception Conditions.”</p>
<p>Additionally:</p>
<table>
<tr>
<td>#UD</td>
<td>If EVEX.vvvv != 1111B.</td></tr></table><footer><p>
This UNOFFICIAL, mechanically-separated, non-verified reference is provided for convenience, but it may be
inc<span style="opacity: 0.2">omp</span>lete or b<sub>r</sub>oke<sub>n</sub> in various obvious or non-obvious
ways. Refer to <a href="https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4">Intel® 64 and IA-32 Architectures Software Developers Manual</a> for anything serious.
</p></footer></body></html>