ia32-64/x86/unpckhpd.html

226 lines
10 KiB
HTML
Raw Permalink Normal View History

2025-07-08 02:23:29 -03:00
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xmlns:x86="http://www.felixcloutier.com/x86"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><link rel="stylesheet" type="text/css" href="style.css"></link><title>UNPCKHPD
— Unpack and Interleave High Packed Double Precision Floating-Point Values</title></head><body><header><nav><ul><li><a href='index.html'>Index</a></li><li>December 2023</li></ul></nav></header><h1>UNPCKHPD
— Unpack and Interleave High Packed Double Precision Floating-Point Values</h1>
<table>
<tr>
<th>Opcode/Instruction</th>
<th>Op / En</th>
<th>64/32 bit Mode Support</th>
<th>CPUID Feature Flag</th>
<th>Description</th></tr>
<tr>
<td>66 0F 15 /r UNPCKHPD xmm1, xmm2/m128</td>
<td>A</td>
<td>V/V</td>
<td>SSE2</td>
<td>Unpacks and Interleaves double precision floating-point values from high quadwords of xmm1 and xmm2/m128.</td></tr>
<tr>
<td>VEX.128.66.0F.WIG 15 /r VUNPCKHPD xmm1,xmm2, xmm3/m128</td>
<td>B</td>
<td>V/V</td>
<td>AVX</td>
<td>Unpacks and Interleaves double precision floating-point values from high quadwords of xmm2 and xmm3/m128.</td></tr>
<tr>
<td>VEX.256.66.0F.WIG 15 /r VUNPCKHPD ymm1,ymm2, ymm3/m256</td>
<td>B</td>
<td>V/V</td>
<td>AVX</td>
<td>Unpacks and Interleaves double precision floating-point values from high quadwords of ymm2 and ymm3/m256.</td></tr>
<tr>
<td>EVEX.128.66.0F.W1 15 /r VUNPCKHPD xmm1 {k1}{z}, xmm2, xmm3/m128/m64bcst</td>
<td>C</td>
<td>V/V</td>
<td>AVX512VL AVX512F</td>
<td>Unpacks and Interleaves double precision floating-point values from high quadwords of xmm2 and xmm3/m128/m64bcst subject to writemask k1.</td></tr>
<tr>
<td>EVEX.256.66.0F.W1 15 /r VUNPCKHPD ymm1 {k1}{z}, ymm2, ymm3/m256/m64bcst</td>
<td>C</td>
<td>V/V</td>
<td>AVX512VL AVX512F</td>
<td>Unpacks and Interleaves double precision floating-point values from high quadwords of ymm2 and ymm3/m256/m64bcst subject to writemask k1.</td></tr>
<tr>
<td>EVEX.512.66.0F.W1 15 /r VUNPCKHPD zmm1 {k1}{z}, zmm2, zmm3/m512/m64bcst</td>
<td>C</td>
<td>V/V</td>
<td>AVX512F</td>
<td>Unpacks and Interleaves double precision floating-point values from high quadwords of zmm2 and zmm3/m512/m64bcst subject to writemask k1.</td></tr></table>
<h2 id="instruction-operand-encoding">Instruction Operand Encoding<a class="anchor" href="#instruction-operand-encoding">
</a></h2>
<table>
<tr>
<th>Op/En</th>
<th>Tuple Type</th>
<th>Operand 1</th>
<th>Operand 2</th>
<th>Operand 3</th>
<th>Operand 4</th></tr>
<tr>
<td>A</td>
<td>N/A</td>
<td>ModRM:reg (r, w)</td>
<td>ModRM:r/m (r)</td>
<td>N/A</td>
<td>N/A</td></tr>
<tr>
<td>B</td>
<td>N/A</td>
<td>ModRM:reg (w)</td>
<td>VEX.vvvv (r)</td>
<td>ModRM:r/m (r)</td>
<td>N/A</td></tr>
<tr>
<td>C</td>
<td>Full</td>
<td>ModRM:reg (w)</td>
<td>EVEX.vvvv (r)</td>
<td>ModRM:r/m (r)</td>
<td>N/A</td></tr></table>
<h2 id="description">Description<a class="anchor" href="#description">
</a></h2>
<p>Performs an interleaved unpack of the high double precision floating-point values from the first source operand and the second source operand. See <a href='pshufb.html#fig-4-15'>Figure 4-15</a> in the Intel® 64 and IA-32 Architectures Software Developers Manual, Volume 2B.</p>
<p>128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The destination is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding ZMM register destination are unmodified. When unpacking from a memory operand, an implementation may fetch only the appropriate 64 bits; however, alignment to 16-byte boundary and normal segment checking will still be enforced.</p>
<p>VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are zeroed.</p>
<p>VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register.</p>
<p>EVEX.512 encoded version: The first source operand is a ZMM register. The second source operand is a ZMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 64-bit memory location. The destination operand is a ZMM register, conditionally updated using writemask k1.</p>
<p>EVEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register, a 256-bit memory location, or a 256-bit vector broadcasted from a 64-bit memory location. The destination operand is a YMM register, conditionally updated using writemask k1.</p>
<p>EVEX.128 encoded version: The first source operand is a XMM register. The second source operand is a XMM register, a 128-bit memory location, or a 128-bit vector broadcasted from a 64-bit memory location. The destination operand is a XMM register, conditionally updated using writemask k1.</p>
<h2 id="operation">Operation<a class="anchor" href="#operation">
</a></h2>
<h3 id="vunpckhpd--evex-encoded-versions-when-src2-is-a-register-">VUNPCKHPD (EVEX Encoded Versions When SRC2 is a Register)<a class="anchor" href="#vunpckhpd--evex-encoded-versions-when-src2-is-a-register-">
</a></h3>
<pre>(KL, VL) = (2, 128), (4, 256), (8, 512)
IF VL &gt;= 128
TMP_DEST[63:0] := SRC1[127:64]
TMP_DEST[127:64] := SRC2[127:64]
FI;
IF VL &gt;= 256
TMP_DEST[191:128] := SRC1[255:192]
TMP_DEST[255:192] := SRC2[255:192]
FI;
IF VL &gt;= 512
TMP_DEST[319:256] := SRC1[383:320]
TMP_DEST[383:320] := SRC2[383:320]
TMP_DEST[447:384] := SRC1[511:448]
TMP_DEST[511:448] := SRC2[511:448]
FI;
FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] := TMP_DEST[i+63:i]
ELSE
IF *merging-masking*
; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking*
; zeroing-masking
DEST[i+63:i] := 0
FI
FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
</pre>
<h3 id="vunpckhpd--evex-encoded-version-when-src2-is-memory-">VUNPCKHPD (EVEX Encoded Version When SRC2 is Memory)<a class="anchor" href="#vunpckhpd--evex-encoded-version-when-src2-is-memory-">
</a></h3>
<pre>(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j := 0 TO KL-1
i := j * 64
IF (EVEX.b = 1)
THEN TMP_SRC2[i+63:i] := SRC2[63:0]
ELSE TMP_SRC2[i+63:i] := SRC2[i+63:i]
FI;
ENDFOR;
IF VL &gt;= 128
TMP_DEST[63:0] := SRC1[127:64]
TMP_DEST[127:64] := TMP_SRC2[127:64]
FI;
IF VL &gt;= 256
TMP_DEST[191:128] := SRC1[255:192]
TMP_DEST[255:192] := TMP_SRC2[255:192]
FI;
IF VL &gt;= 512
TMP_DEST[319:256] := SRC1[383:320]
TMP_DEST[383:320] := TMP_SRC2[383:320]
TMP_DEST[447:384] := SRC1[511:448]
TMP_DEST[511:448] := TMP_SRC2[511:448]
FI;
FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] := TMP_DEST[i+63:i]
ELSE
IF *merging-masking*
; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE *zeroing-masking*
; zeroing-masking
DEST[i+63:i] := 0
FI
FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
</pre>
<h3 id="vunpckhpd--vex-256-encoded-version-">VUNPCKHPD (VEX.256 Encoded Version)<a class="anchor" href="#vunpckhpd--vex-256-encoded-version-">
</a></h3>
<pre>DEST[63:0] := SRC1[127:64]
DEST[127:64] := SRC2[127:64]
DEST[191:128] := SRC1[255:192]
DEST[255:192] := SRC2[255:192]
DEST[MAXVL-1:256] := 0
</pre>
<h3 id="vunpckhpd--vex-128-encoded-version-">VUNPCKHPD (VEX.128 Encoded Version)<a class="anchor" href="#vunpckhpd--vex-128-encoded-version-">
</a></h3>
<pre>DEST[63:0] := SRC1[127:64]
DEST[127:64] := SRC2[127:64]
DEST[MAXVL-1:128] := 0
</pre>
<h3 id="unpckhpd--128-bit-legacy-sse-version-">UNPCKHPD (128-bit Legacy SSE Version)<a class="anchor" href="#unpckhpd--128-bit-legacy-sse-version-">
</a></h3>
<pre>DEST[63:0] := SRC1[127:64]
DEST[127:64] := SRC2[127:64]
DEST[MAXVL-1:128] (Unmodified)
</pre>
<h2 id="intel-c-c++-compiler-intrinsic-equivalent">Intel C/C++ Compiler Intrinsic Equivalent<a class="anchor" href="#intel-c-c++-compiler-intrinsic-equivalent">
</a></h2>
<pre>VUNPCKHPD __m512d _mm512_unpackhi_pd( __m512d a, __m512d b);
</pre>
<pre>VUNPCKHPD __m512d _mm512_mask_unpackhi_pd(__m512d s, __mmask8 k, __m512d a, __m512d b);
</pre>
<pre>VUNPCKHPD __m512d _mm512_maskz_unpackhi_pd(__mmask8 k, __m512d a, __m512d b);
</pre>
<pre>VUNPCKHPD __m256d _mm256_unpackhi_pd(__m256d a, __m256d b)
</pre>
<pre>VUNPCKHPD __m256d _mm256_mask_unpackhi_pd(__m256d s, __mmask8 k, __m256d a, __m256d b);
</pre>
<pre>VUNPCKHPD __m256d _mm256_maskz_unpackhi_pd(__mmask8 k, __m256d a, __m256d b);
</pre>
<pre>UNPCKHPD __m128d _mm_unpackhi_pd(__m128d a, __m128d b)
</pre>
<pre>VUNPCKHPD __m128d _mm_mask_unpackhi_pd(__m128d s, __mmask8 k, __m128d a, __m128d b);
</pre>
<pre>VUNPCKHPD __m128d _mm_maskz_unpackhi_pd(__mmask8 k, __m128d a, __m128d b);
</pre>
<h2 class="exceptions" id="simd-floating-point-exceptions">SIMD Floating-Point Exceptions<a class="anchor" href="#simd-floating-point-exceptions">
</a></h2>
<p>None.</p>
<h2 class="exceptions" id="other-exceptions">Other Exceptions<a class="anchor" href="#other-exceptions">
</a></h2>
<p>Non-EVEX-encoded instructions, see <span class="not-imported">Table 2-21</span>, “Type 4 Class Exception Conditions.”</p>
<p>EVEX-encoded instructions, see <span class="not-imported">Table 2-50</span>, “Type E4NF Class Exception Conditions.”</p><footer><p>
This UNOFFICIAL, mechanically-separated, non-verified reference is provided for convenience, but it may be
inc<span style="opacity: 0.2">omp</span>lete or b<sub>r</sub>oke<sub>n</sub> in various obvious or non-obvious
ways. Refer to <a href="https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4">Intel® 64 and IA-32 Architectures Software Developers Manual</a> for anything serious.
</p></footer></body></html>